Perbandingan Algoritma Naïve Bayes dan Algoritma Support Vector Machine (SVM) Untuk Melihat Potensi Kepatuhan Peserta BPJS Dalam Membayar Tagihan

Lestari, Rika Dinda (2024) Perbandingan Algoritma Naïve Bayes dan Algoritma Support Vector Machine (SVM) Untuk Melihat Potensi Kepatuhan Peserta BPJS Dalam Membayar Tagihan. CESS (Journal of Computing Engineering, System and Science).

[img] Text
61542-135602-1-PB_(3).pdf

Download (703kB)

Abstract

Jaminan Kesehatan Nasional (JKN) yang diselenggarakan oleh Badan Penyelenggara Jaminan Sosial (BPJS) merupakan jaminan sosial yang wajib bagi seluruh warga negara Indonesia berdasarkan Undang-Undang Nomor 40 Tahun 2004 tentang Sistem Jaminan Sosial Nasional (SJSN). Penelitian ini bertujuan untuk melihat potensi kepatuhan peserta BPJS dalam membayar tagihan dengan menggunakan perbandingan antara algoritma naïve bayes dan algoritma support vector machine (SVM). Pada penelitian ini metode yang digunakan ialah metode kuantitatif dengan menghitung hasil tingkat akurasi dari masing masing algoritma yang digunakan. Sebelum dilakukannya penerapan pada algoritma naive bayes dan algoritma support vector machine (SVM) maka akan dilakukannya teknik KDD (Knowledge Discovery in Database) agar data yang digunakan lebih akurat. Dengan data sampel sebanyak 1.499 kita dapat mengetahui peserta BPJS mana yang membayar tagihannya sangat tepat waktu, tepat waktu, dan tidak tepat waktu dengan menggunakan teknik klasifikasi dan menerapkan algoritma naïve bayes dan algoritma support vector machine (SVM) pada rapidminer alat sehingga dapat diperoleh hasil akurasi sebesar 99,10%. Dengan nilai sangat tepat waktu sebesar 0,334, tepat waktu dengan nilai sebesar 0,182, dan tidak tepat waktu dengan nilai sebesar 0,484 pada algoritma naïve bayes. Sedangkan pada algoritma support vector machine (SVM) memperoleh tingkat akurasi sebesar 98,48% dengan nilai sangat tepat waktu sebesar 45, tepat waktu dengan nilai 6, dan tidak tepat waktu dengan nilai 45. dilihat dari hasil tingkat akurasi algoritma naïve bayes lebih unggul dibandingkan algoritma support vector machine (SVM).

Jenis Item: Artikel
Subjects: 000 Generalities > 005 Computer programming, programs, data
Divisions: Fakultas Sains dan Teknologi > Ilmu Komputer
Pengguna yang mendeposit: Mrs Siti Masitah
Date Deposited: 30 Jan 2025 05:57
Last Modified: 30 Jan 2025 05:57
URI: http://repository.uinsu.ac.id/id/eprint/24181

Actions (login required)

View Item View Item