

PERBEDAAN MODEL PEMBELAJARAN NUMBERED HEAD TOGETHER DAN TWO STAY-TWO STRAY TERHADAP KEMAMPUAN PEMECAHAN MASALAH DAN PENALARAN MATEMATIS SISWA SMA KARTIKA I-2 MEDAN

SKRIPSI

Diajukan untuk Melengkapi Tugas-tugas dan Memenuhi Syarat-syarat
Untuk Memperoleh Gelar Sarjana Pendidikan (S.Pd)
Dalam Ilmu Tarbiyah dan Keguruan

Oleh:

<u>DYAN WULANDARI PUTRI</u> 0305162083 Jurusan Pendidikan Matematika

JURUSAN PENDIDIKAN MATEMATIKA
FAKULTAS ILMU TARBIYAH DAN KEGURUAN
UNIVERSITAS ISLAM NEGERI SUMATERA UTARA
MEDAN

2020

PERBEDAAN MODEL PEMBELAJARAN NUMBERED HEAD TOGETHER DAN TWO STAY-TWO STRAY TERHADAP KEMAMPUAN PEMECAHAN MASALAH DAN PENALARAN MATEMATIS SISWA SMA KARTIKA I-2 MEDAN

SKRIPSI

Diajukan untuk Melengkapi Tugas-tugas dan Memenuhi Syarat-syarat Untuk Memperoleh Gelar Sarjana Pendidikan (S.Pd) Dalam Ilmu Tarbiyah dan Keguruan

Oleh:

DYAN WULANDARI PUTRI 0305162083

Jurusan Pendidikan Matematika

Disetujui Oleh:

PEMBIMBING SKRIPSI I

PEMBIMBING SKRIPSI II

Prof. Dr. Wahyuddin Nur Nst, MA

NIP. 19700427 199503 1 002

<u>Dr. Mara Samin Lubis, M.Ed</u> NIP. 19730501 200312 1 004

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS ILMU TARBIYAH DAN KEGURUAN UNIVERSITAS ISLAM NEGERI SUMATERA UTARA MEDAN 2020

PERNYATAAN KEASLIAN SKRIPSI

Sehubungan dengan berakhirnya perkuliahan maka setiap mahasiswa diwajibkan melaksanakan penelitian, sebagai salah satu syarat untuk memperoleh gelar sarjana, maka dengan ini saya:

Nama : Dyan Wulandari Putri

NIM : 0305162083

Program Studi : Pendidikan Matematika

Judul Skripsi : Perbedaan Model Pembelajaran Numbered Head Together

dan Two Stay-Two Stray terhadap Kemampuan Pemecahan

Masalah dan Penalaran Matematis Siswa SMA KARTIKA

I-2 Medan.

Menyatakan dengan sebenarnya bahwa skripsi yang saya serahlan ini benar-benar merupakan hasil karya sendiri kecuali kutipan-kutipan dan ringkasan-ringkasan yang semuanya telah saya jelaskan sumbernya. Apabila dikemudian hari terbukti atau dapat dibuktikan skripsi ini hasil jiplakan maka gelar dan ijazah yang diberikan oleh universitas batal saya teriman.

Medan, Juni 2020

Yang Membuat Pernyataan

<u>Dyan Wulandari Putri</u> NIM. 0305612083

ABSTRAK

Nama : Dyan Wulandari Putri

NIM : 0305162083

Fak/Jur : Ilmu Tarbiyah dah Keguruan / Pendidikan

Matematika

Pembimbing I : Prof. Dr. Wahyudin Nur Nst, MA Pembimbing II : Dr. Mara Samin Lubis, M. Ed

Pembimbing II : Dr. Mara Samin Lubis, M. Ed Judul : Perbedaan Model Pembelajara

: Perbedaan Model Pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* terhadap
Kemampuan Pemecahan Masalah dan Penalaran

Matematis Siswa SMA KARTIKA I-2 Medan.

Kata-Kata Kunci : Model Pembelajaran *Numbered Head Together*, Model Pembelajaran *Two Stay-Two Stray*, Kemampuan Pemecahan Masalah, Kemampuan Penalaran Matematis.

Penelitian ini bertujuan untuk mengetahui apakah terdapat perbedaan model pembelajaran numbered head together dan model pembelajaran two stay-two stray terhadap kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa di kelas XI SMA KARTIKA I-2 Medan.

Penelitian ini adalah penelitian kuantitatif, dengan jenis penelitian *quasi eksperimen*. Populasinya adalah seluruh kelas XI SMA KARTIKA I-2 Medan tahun ajaran 2019-2020 yang berjumlah 7 kelas. Sampel yang digunakan oleh peneliti adalah kelas XI IPA 2 dan XI IPA 4 yang masing-masing berjumlah 36 siswa untuk dijadikan kelas eksperimen I dan II yang diperoleh dengan cara *cluster random sampling*. Instrument tes yang digunakan untuk mengetahui kemampuan pemecahan masalah dan penalaran matematis siswa adalah dengan menggunakan tes berbentuk uraian. Analisis data dilakukan dengan analisis varians (ANAVA).

Hasil temuan ini menunjukkan: 1) Terdapat perbedaan kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* dengan model pembelajaran *Two Stay-Two Stray* pada materi Limit Fungsi Aljabar dengan $F_{hitung} = 14,1147 > F_{tabel}$ taraf α (0,05) = 3,98; 2) Terdapat perbedaan kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* dengan model pembelajaran *Two Stay-Two Stray* pada materi Limit Fungsi Aljabar dengan $F_{hitung} = 12,0163 > F_{tabel}$ taraf α (0,05) = 3,98; 3) Terdapat perbedaan kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* dengan model pembelajaran *Two Stay-Two Stray* pada materi Limit Fungsi Aljabar dengan $F_{hitung} = 25,56 > F_{tabel}$ taraf α (0,05) = 3,91; 4) Tidak terdapat interaksi yang signifikan antara model pembelajaran yang digunakan terhadap kemampuan pemecahan masalah dan penalaran matematis siswa pada materi Limit Fungsi Aljabar dengan $F_{hitung} = 0,002 < F_{tabel}$ taraf α (0,05) = 3,91. Simpulan dalam penelitian ini menjelaskan bahwa terdapat perbedaan kemampuan pemecahan masalah dan penalaran matematis siswa yang diajarkan dengan model pembelajaran *numbered head together* dan *two stay-two stray*.

Mengetahui, Pembimbing Skripsi I

1

Prof. Dr. Wahyuddin Nur Nst, MA NIP. 19700427 199503 1 002

KATA PENGANTAR

Alhamdulillah, segala puji dan syukur penulis panjatkan kepada Allah Subhanahu wa Ta'ala yang telah melimpahkan karunia-Nya kepada penulis, sehingga penulis dapat menyelesaikan penyusunan Skripsi dengan judul: "Perbedaan Model Pembelajaran *Numbered Head Together* dan Model Pembelajaran *Two Stay-Two Stray* Terhadap Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa Kelas XI SMA KARTIKA I-2 Medan". Shalawat serta salam penulis sampaikan kepada Nabi Muhammad shallallahu 'alaihi wa sallam, yang telah membawa manusia dari zaman kebodohan menuju zaman yang penuh dengan ilmu pengetahuan.

Dalam penyusunan skripsi ini, tentunya tidak terlepas dari arahan dan bimbingan dari bapak pembimbing skripsi I serta bapak pebimbing skripsi II. Maka dengan hal itu, dalam kesempatan ini penulis mengucapkan terimakasih kepada bapak Dr. Wahyuddin Nur Nst, MA selaku pembimbing skripsi I dan bapak Dr. Mara Samin Lubis, M. Ed selaku pembimbing skripsi II yang telah memberi arahan dalam penulisan skripsi ini.

Skripsi ini disusun dalam rangka memenuhi tugas serta syarat-syarat untuk memperoleh Gelar Sarjana Pendidikan. Penulis menyadari bahwa masih banyak kekurangan baik dari segi isi maupun tata bahasa, hal ini disebabkan keterbatasan pengetahuan dan pengalaman yang penulis miliki. Untuk itu penulis mengharapkan kritik dan saran yang bersifat membangun demi kesempurnaan Skripsi penelitian ini.

Medan, Juni 2020

Penulis

UCAPAN TERIMA KASIH

Assalamu'alaikum, Wr. Wb.

Pada awalnya, penulis mengira akan susah dan banyak hambatan dalam pengerjaan skripsi ini, namun atas izin Allah SWT serta berkat arahan, bimbingan, dan dukungan yang diterima, semuanya berjalan dengan amat baik.

Oleh karena itu, pada kesempatan kali ini izinkan penulis untuk mengucapkan terimakasih yang sebesar-besarnya kepada semua pihak yang telah memberikan bantuan dan motivasi, baik secara langsung maupun tidak langsung serta dalam bentuk moril maupun materil sehingga skripsi ini dapat diselesaikan.

Penulis juga dengan sepenuh hati berterima kasih kepaada:

- Bapak Prof. Dr. KH. Saidurrahman, M.Ag selaku Rektor UIN Sumatera Utara.
- Bapak Dr. H. Amiruddin Siahaan, M.Pd selaku Dekan Fakultas Ilmu Tarbiyah dan Keguruan UIN Sumatera Utara.
- Bapak Dr. Indra Jaya, M.Pd selaku Ketua Jurusan Program Studi Pendidikan Matematika UIN Sumatera Utara.
- 4. Ibu **Siti Maysarah, M.Pd** selaku Sekretaris Jurusan Program Studi Pendidikan Matematika UIN Sumatera Utara.
- 5. Bapak **Prof. Dr. Wahyuddin Nur Nst, MA** selaku Dosen Pembimbing Skripsi I yang telah memberikan banyak bimbingan dan arahan kepada penulis dalam menyelesaikan skripsi ini.
- Bapak Dr. Mara Samin Lubis, M.Ed selaku Dosen Pembimbing Skripsi
 II yang juga telah memberihan banyak arahan serta bimbingan dalam penyelesaian skripsi ini.

- 7. Ibu **Fauziah Nasution, M.Psi** selaku Dosen Penasehat Akademik yang sudah senantiasa memberikan arahan serta bimbingan selama mengikuti perkuliahan.
- 8. Bapak/Ibu Dosen serta Staf Pegawai Fakultas Ilmu Tarbiyah dan Keguruan UIN Sumatera Utara yang telah membimbing, membantu, melayani serta mendidik penulis selama mengikuti perkuliahan.
- 9. Seluruh Pihak SMA Kartika I-2 Medan terutama Bapak Muhammad Syahril Nst, S. Ag dan Bapak Liza Aulia S.Pd selaku Kasek dan Wakasek SMA Kartika I-2 Medan, Ibu Dra. Hj. Zamiarni dan Bapak Ritawan, S.Pd.I selaku Guru Matematika kelas XI IPA 2 dan XI IPA 4 yang sudah banyak membantu serta membimbing penulis selama proses penelitian, para Staf dan juga siswa/i kelas XI SMA Kartika I-2 Medan terkhusus kelas XI IPA 2 dan XI IPA 4 yang telah berpartisipasi dan membantu selama proses penelitian berlangsung sehingga penelitian ini dapat diselesaikan dengan baik.
- 10. Terkhusus dan teristimewa penulis sampaikan terimakasih sedalam-dalamnya kepada kedua orang tua penulis yang amat penulis kasihi dan sayangi yaitu Ayahanda Ir. Wisnu Busono dan Ibunda Emma Andriana yang keduanya sangat luar biasa dalam membimbing serta memberikan arahan dalam segala aspek kehidupan, selalu ada disaat penulis membutuhkan sandaran, serta selalu bersedia mendengarkan keluh kesah penulis selama perkuliahan. Dan juga kepada Abang Basuendro Putro, ST serta Adik Prasetyo Seto Putro, kehadiran

- mereka didunia sudah menjadi hal yang membahagiakan serta sangat disyukuri bagi penulis.
- 11. Kepada keluarga terkasih yang menjadi motivasi penulis dalam menyelesaikan penulisan skripsi ini, **Eyangti, Tepo, Om Heru,** terima kasih sudah sangat membantu penulis dalam hal apapun, sudah memberikan yang terbaik untuk penulis.
- 12. Kepada **Mera, Pebot, Keca,** saudara sekaligus penyemangat penulis selama menyelesaikan skripsi ini.
- 13. Kepada kawan seperjuangan **Nopal,** yang <u>selalu bersama</u> penulis sedari hari pertama perkuliahan, hingga berjuang bersama-sama dalam menemukan titik terang penulisan skripsi ini, *maaci nopillll kita akhirnya bisa melalui semuanya*.
- 14. Kepada Sahabat-Sahabat penulis yang berada dalam geng CONGEKS, yaitu Grace Inoy Simanjuntak, Dearma Ajmi Harahap, Riani Alhasannah, Asri Fera Sastika, dan Desi Novalisa, love you weee, ku sangat beruntung memiliki kalian.
- 15. Kepada kelas terbaik selama proses perkuliahan, teman-teman seperjuangan, **COMEL SQUAD**, semuanya, *I love you and I miss you so much weee, see u on top*.
- 16. Kepada sahabat Natasya Anggia Putri, Elviza Azura Hasibuan, Rifany Arbita Lubis, dan Bella Adelia Putri yang sudah selalu menjadi orang yang penulis hubungi saat susah maupun senang, tempat berbagi keluh kesah sejak masa SMA dimulai.

- Kepada sahabat sedari kecil Fikri, Nandar, Imas, Lala, Rida, Meta,
 dan semuanya, terimakasih. Wait for me to come home ya guys.
- 18. Kepada sahabat yang bernama **Rey,** teman baru, teman *seper-iKON-an*, yang sudah sefrekuensi perihal *kebucinan* kepada *bias wkwkwkw*, *lopyu rey*.
- Kepada teman-teman seperjuangan lainnya, Anggi, Sandra, Ika, Bella, terimakasih sudah mewarnai serta menemani pulang-pergi perkuliahan sedari semester satu.
- 20. Kepada teman-teman lainnya, **Yara, Bagus, Andre,** terimakasih sudah mewarnai hari-hari penulis sedari 10 tahun yang lalu.
- 21. Kepada kakak-kakak senior PMM UINSU terkhusus **kak Ami**, yang sudah sangat membantu penulis dalam penulisan skripsi ini, memberikan arahan dan penjelasan yang sangat berarti bagi penulis.
- 22. Kepada teman-teman kelompok KKN 59 yang sudah mendewasakan penulis, sudah memberikan pengalaman berharga, terkhusus kepada Balqis Yeobo, Shelcit Hrp, Sa'ad, Kak Cun, Ayuk Keter, Kak Icha terimakasih sudah menemani serta mewarnai hari-hari penulis selama KKN berlangsung.
- 23. Kepada teman-teman kelompok PPL III MTs Islam Cerdas Murni Tembung, terkhusus kepada Anum, Acik, Azra, Yuyun, terimakasih sudah berjuang bersama.
- 24. Last but not least, terimakasih kepada one and only idol grup yang disayangi, iKON, yang sudah menyemangati penulis dengan lagulagunya. Terimakasih Kim Hanbin, Kim Jinhwan, Kim Jiwon, Song

Yunhyeong, Koo Junhoe, Kim Donghyuk, Jung Chanwoo yang sudah

mengajarkan arti berjuang dan bertahan, mengajarkan menjadi orang

baik, serta membantu penulis menemukan jati diri sesungguhnya.

Sekali lagi penulis ucapkan terimakasih sedalam-dalamnya atas bantuan

yang telah diberikan dari semua pihak baik itu bantuan secara materil maupun

moril, memberikan semangat, motivasi serta arahan kepada penulis sehingga

penulis dapat menyelesaikan skripsi ini dengan sebagaimana mestinya. Tanpa

adanya bantuan tersebut, mungkin skripsi ini tidak dapat terselesaikan secara

maksimal. Semoga diberikan balasan baik dari Allah SWT serta keberkahan atas

apa yang sudah dilakukan. Aamiin Aamiin Allahumma Aamiin.

Walaikumussalam, Wr. Wb.

Medan, Juni 2020

Penulis,

Dyan Wulandari Putri

NIM. 0305162083

DAFTAR ISI

KA	ATA PENGANTAR	i
DA	FTAR ISI	ii
DA	AFTAR TABEL	V
BA	B I PENDAHULUAN	
A.	Latar Belakang Masalah	1
B.	Identifikasi Masalah	7
C.	Batasan Masalah	7
D.	Rumusan Masalah	8
E.	Tujuan Penelitian	8
F.	Manfaat penelitian	9
BA	B II LANDASAN TEORITIS	
A.	Kerangka Teoritis1	1
	1. Kemampuan Pemecahan Masalah Matematis	1
	2. Kemampuan Penalaran Matematis	5
	3. Model Pembelajaran Numbered Head Together	9
	4. Model Pembelajaran <i>Two Stay-Two Stray</i>	5
B.	Kerangka Berpikir	1
C.	Penelitian Yang Relevan	5
D.	Hipotesis Penelitian	8

BAB III METODE PENELITIAN

A.	Lokasi Dan Waktu Penelitian40	
В.	Jenis Penelitian40	
C.	Populasi dan Sampel41	
	1. Populasi41	
	2. Sampel	
D.	Desain Penelitian	
E.	Definisi Operasional	
	1. Model Pembelajaran Numbered Head Together44	
	2. Model Pembelajaran <i>Two Stay-Two Stray</i>	
	3. Kemampuan Pemecahan Masalah	
	4. Kemampuan Penalaran Matematis	
F.	Instrumen Pengumpulan data	
G.	Teknik Pengumpulan Data	
Н.	Teknik Analisis Data53	
BA	AB IV HASIL PENELITIAN	
A.	Deskripsi Data60	
В.	Uji Persyaratan Analisis70	
C.	Hasil Analalisis Data/Pengujian Hipotesis	
D.	Pembahasan Hasil Penelitian80	
E.	Keterbatasan Penelitian90	
BA	AB V PENUTUP	
A.	Kesimpulan95	
В.	Implikasi Penelitian96	

C.	Saran	99
DA	FTAR PUSTAKA	99

DAFTAR TABEL DAN GRAFIK

Tabel 2.1 Sintaks Model Pembelajaran NHT
Tabel 2.2 Sintaks Model Pembelajaran TSTS
Tabel 3.1 Jumlah Siswa Kelas XI SMA Kartika I-2 Medan41
Tabel 3.2 Desain Penelitian Anava Dua Jalur dengan Taraf 2 x 2
Tabel 3.3 Kisi-Kisi Tes Kemampuan Pemecahan Masalah46
Tabel 3.4 Rubrik Penskoran Tes Kemampuan Pemecahan Masakah47
Tabel 3.5 Kisi-Kisi Tes Kemampuan Penalaran Matematis
Tabel 3.6 Rubrik Penskoran Tes Penalaran Matematika
Tabel 3.7 Penilaian Rater
Tabel 3.8 Rekap Hasil Penilaian
Tabel 3.9 Hasil Tabulasi Silang
Tabel 3.10 Validitas Butir Soal Tes Kemampuan Pemecahan Masalah dan
Penalaran Matematis
Tabel 3.11 Kriteria Reliabilitas Suatu Tes
Tabel 3.12 Indeks Kesukaran Soal
Tabel 3.13 Tingkat Kesukaran Tes Kemampuan Pemecahan Masalah dan
Penalaran Matematis
Tabel 3.14 Indeks Daya Pembeda
Tabel 3.15 Daya Pembeda Soal Tes Kemampuan Pemecahan Masalah dan
Penalaran Matematis
Tabel 3.16 Interval Kriteria Skor Kemampuan Pemecahan Masalah54
Tabel 3.17 Interval Kriteria Skor Kemampuan Penalaran Matematis

Tabel 4.1 Data Kemampuan Pemecahan Masalah dan Kemampuan Penalaran
Matematis Siswa yang Diajar dengan Model Pembelajaran Numbered Head
Together dan Model Pembelajaran Two Stay-Two Stray
Tabel 4.2 Distribusi Frekuensi Data Kemampuan Pemecahan Masalah Matematis
Siswa yang diajar dengan Model Pembelajaran Numbered Head Together (A1B1)
Tabel 4.3 Kategori Penilaian Kemampuan Pemecahan Masalah Matematis Siswa
yang Diajar dengan Model Pembelajaran Numbered Head Together (A1B1)
Tabel 4.4 Distribusi Frekuensi Data Kemampuan Pemecahan Masalah Matematis
Siswa yang diajar dengan Model Pembelajaran Two Stay-Two Stray (A2B1)
Tabel 4.5 Kategori Penilaian Kemampuan Pemecahan Masalah Matematis Siswa
yang Diajar dengan Model Pembelajaran Two Stay-Two Stray (A2B1)
Tabel 4.6 Distribusi Frekuensi Data Kemampuan Penalaran Matematis Siswa
yang diajar dengan Model Pembelajaran Numbered Head Together (A1B2)
Tabel 4.7 Kategori Penilaian Kemampuan Penalaran Matematis Siswa yang
Diajar dengan Model Pembelajaran Numbered Head Together (A1B2)
Tabel 4.8 Distribusi Frekuensi Data Kemampuan Penalaran Matematis Siswa
yang diajar dengan Model Pembelajaran Two Stay-Two Stray (A2B2)
Tabel 4.9 Kategori Penilaian Kemampuan Penalaran Matematis Siswa yang
Diajar dengan Model Pembelajaran Two Stay-Two Stray (A2B2)
Tabel 4.10 Distribusi Frekuensi Data Kemampuan Pemecahan Masalah dan
Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran Numbered
Head Together (A1)
Grafik 2.1

Tabel 4.11 Kategori Penilaian Kemampuan Pemecahan Masalah dan Penalaran
Matematis Siswa yang Diajar dengan Model Pembelajaran Numbered Head
Together (A1)
Tabel 4.12 Distribusi Frekuensi Data Kemampuan Pemecahan Masalah dan
Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran Two Stay-
Two Stray (A2)
Tabel 4.13 Kategori Penilaian Kemampuan Pemecahan Masalah dan Penalaran
Matematis Siswa yang Diajar dengan Model Pembelajaran Two Stay-Two Stray
(A2)
Tabel 4.14 Distribusi Frekuensi Data Kemampuan Pemecahan Masalah Matematis
Siswa yang diajar dengan Model Pembelajaran Numbered Head Together dan
Two Stay-Two Stray (B1)
Tabel 4.15 Kategori Penilaian Kemampuan Pemecahan Masalah Matematis Siswa
yang Diajar dengan Model Pembelajaran Numbered Head Together dan Two Stay-
Two Stray (B1)
Tabel 4.16 Distribusi Frekuensi Data Kemampuan Penalaran Matematis Siswa
yang diajar dengan Model Pembelajaran Numbered Head Together dan Two Stay-
Two Stray (B2)
Tabel 4.17 Kategori Penilaian Kemampuan Penalaran Matematis Siswa yang
Diajar dengan Model Pembelajaran Numbered Head Together dan Two Stay-Two
Stray (B2)
Tabel 4.18 Rangkuman Hasil Uji Normalitas Sub Kelompok
Tabel 4.19 Rangkuman Hasil Uji Homogenitas untuk Kelompok Sampel

Tabel 4.20 Hasil ANAVA dari Kemampuan Pemecahan Masalah dan Penalaran				
Matematis Siswa yang diajar dengan Model Pembelajaran Numbered Head				
Together dan Two Stay-Two Stray				
Tabel 4.21 Perbedaan A1 dan A2 pada B1				
Tabel 4.22 Perbedaan A1 dan A2 pada B2				

DAFTAR LAMPIRAN

Lampiran 1 RPP NHT

Lampiran 2 RPP TSTS

Lampiran 3 Soal Tes Kemampuan Pemecahan Masalah

Lampiran 4 Kunci Jawaban Tes Pemecahan Masalah

Lampiran 5 Soal Tes Kemampuan Penalaran Matematis

Lampiran 6 Kunci Jawaban Tes Kemampuan Penalaran

Lampiran 7 Data Hasil Kelas Eksperimen I

Lampiran 8 Data Hasil Kelas Eksperimen II

Lampiran 9 Kisi-Kisi Kemampuan Pemecahan Masalah Matematis

Lampiran 10 Kisi-Kisi Kemampuan Penalaran Matematis

Lampiran 11 Pedoman Penskoran Kemampuan Pemecahan Masalah

Lampiran 12 Pedoman Penskoran Kemampuan Penalaran

Lampiran 13 Analisis Instrumen

Lampiran 14 Pedoman Validitas Isi

Lampiran 15 Uji Normalitas

Lampiran 16 Uji Homogenitas

Lampiran 17 Uji Hipotesis ANAVA

Lampiran 18 Surat Izin Riset

Lampiran 19 Surat Balasan Riset

Lampiran 20 Dokumentasi

Lampiran 21 Lembar Observer Guru

BABI

PENDAHULUAN

A. Latar Belakang Masalah

Pendidikan merupakan suatu hal yang penting bagi setiap negara untuk dapat berkembang pesat. Negara yang hebat pasti akan menempatkan pendidikan sebagai prioritas pertamanya, karena dengan pendidikan, kemiskinan pada rakyat di negara tersebut akan dapat tergantikan menjadi kesejahteraan. Bagaimanapun, dalam perkembangannya saat ini, pendidikan di Indonesia senantiasa harus menghadapi berbagai masalah di setiap tahapnya. Masalah-masalah tersebut hanya dapat diselesaikan dengan partisipasi dengan semua pihak yang terkait di dalam sistem pendidikan, seperti orang tua, guru-guru, kepala sekolah, masyarakat, dan juga peserta didik itu sendiri. Pihak-pihak terkait tersebut dituntut untuk mampu menjalankan perannya dengan baik dan sesuai, sehingga pendidikan di Indonesia akan menjadi hal yang patut dibanggakan di masa yang akan datang.

Pada masa yang akan datang, proses pendidikan yang baik sangat diperlukan untuk mengharapkan keseimbangan dan kesempurnaan dalam perkembangan individu maupun masyarakat.² Contohnya dalam perkembangan proses pendidikan di Indonesia, sudah banyak terdapat berbagai macam model, metode, strategi, bahkan pendekatan pembelajaran yang dibuat untuk mengembangkan kemampuan peserta didik. Namun faktanya hal tersebut tidak

¹ Priarti Megawanti, "Meretas Permasalahan Pendidikan di Indonesia", *Jurnal Prodi Matematika, Fak. Teknik, Matematika dan IPA Univ. Indraprasta PGRI*, Vol.2 No. 3 (10 Agustus 2015), 227.

Nurkholis, "Pendidikan Dalam Upaya Memajukan Teknologi", *Jurnal Kependidikan Universitas Negeri Jakarta*, Vol.1 No. 1 (1 November 2013), 25.

diindahkan oleh pihak yang terkait sehingga tujuan mengembangkan peserta didikpun tidak sepenuhnya tercapai. Maka dari itu, untuk mencapai tujuan pengembangan peserta didik tersebut, dibutuhkan suatu proses pembelajaran yang dapat menarik peserta didik agar mampu dengan sendirinya mengembangkan kemampuan yang ia punya. Bukan lagi proses pembelajaran dimana guru mengajar secara monoton satu arah, atau tidak memberikan kesempatan bagi peserta didik untuk mengemukakan pendapatnya, namun proses pembelajaran yang kreatif serta inovatif yang mampu untuk mengembangkan kemampuan peserta didik tersebut.

Dalam mengembangkan kemampuannya, peserta didik dituntut untuk memiliki pemahaman dalam pembelajaran. Namun pada kenyataannya mereka hanya menerima begitu saja pembelajaran yang diberikan, tanpa mempertanyakan mengapa atau untuk apa suatu pembelajaran itu diajarkan. Padahal pembelajaran tersebut diajarkan untuk mengembangkan kemampuan yang mereka punya, salah satunya mengembangkan kemampuan dalam pembelajaran matematika.

Pembelajaran matematika, sejatinya, selalu diidentikkan dengan segala sesuatu yang bersifat abstrak, perhitungan, penalaran, penghafalan rumus, keaktifan berfikir dan pemahaman-pemahaman teorema yang digunakan sebagai dasar mata pelajaran eksak lainnya. Matematika dikatakan sebagai ratu ilmu, karena matematika merupakan sumber dari ilmu yang lain. Banyak sekali cabang ilmu pengetahuan yang pengembangan teorinya didasarkan pada pengembangan konsep matematika. Tersirat bahwa matematika sebagai suatu ilmu yang berfungsi untuk melayani ilmu pengetahuan. Dalam pembelajaran matematika, terdapat

beberapa kemampuan yang merupakan kemampuan matematis yaitu kemampuan pemecahan masalah dan kemampuan penalaran.

Kemampuan pemecahan masalah dan kemampuan penalaran harusnya mampu membuat hasil belajar matematika peserta didik meningkat. Namun kenyataan menunjukkan bahwa secara umum hasil belajar siswa Indonesia khususnya di mata pelajaran matematika belum dapat dikatakan mampu bersaing. Hasil evaluasi Programme for International Student Assessment (PISA), pada tanggal 3 Desember 2019, Indonesia berada di peringkat 72 dari 78 negara yang ikut serta dalam skor bidang matematika. Pada penelitian tahun 2018, Program Research in Improvement of System Education (RISE) di Indonesia, merilis hasil studinya yang menunjukkan bahwa kemampuan siswa dalam memecahkan soal matematika sederhana tidak berbeda secara signifikan antara siswa yang baru masuk SD dengan yang sudah tamat SMA. Juga pada hasil survey kemendikbud melalui program Indonesia National Assesment Program (INAP) pada tahun 2016 menunjukkan sekitar 77,13% siswa diseluruh Indonesia memiliki kompetensi matematika yang sangat rendah, yakni 20,58% cukup dan hanya 2,29% yang berkategori baik. Hal tersebut dikarenakan kurangnya interaksi antara pihak-pihak yang terlibat dalam pembelajaran.

Hasil penelitian Wahyuddin juga menunjukkan bahwa kemampuan matematika peserta didik sangat rendah. Ia menemukan lima kelemahan yang ada pada peserta didik, diantaranya adalah kurang memiliki kemampuan nalar yang logis dalam menyelesaikan permasalahan atau soal-soal dalam matematika.³

³ Eyus Sudihartinih, "Meningkatkan Kemampuan Penalaran Matematik Siswa SMA Melalui Pembelajaran Menggunakan Tugas Bentuk Superitem", *Jurnal Universitas Pendidikan Indonesia* (Oktober 2012), 169.

Begitu juga hasil penelitian Matlin, mengatakan bahwa peserta didik sekolah menengah atas (high school) dan perguruan tinggi (college) mengalami kesukaran atau kesulitan dalam penggunaan model dan kekonsistenan penalaran serta pemecahan masalah dalam proses pembelajaran.⁴ Hal tersebut menjadi tolak ukur peneliti dalam penelitian kali ini, mengingat salah satu tujuan pembelajaran matematika ialah agar peserta didik memiliki kemampuan pemecahan masalah dan kemampuan penalaran yag baik.

Kemampuan pemecahan masalah ialah merupakan salah satu tujuan dalam proses pembelajaran yang ditinjau dari aspek kurikulum. Pentingnya kemampuan ini juga dipaparkan oleh National Council of Teacher of Mathematics. Berdasarkan penelitian terdahulu, pemecahan masalah matematika siswa disekolah masih rendah. Hal ini dikarenakan selama ini pembelajaran kurang memberikan kesempatan kepada peserta didik untuk mengembangkan kemampuannya dalam memecahkan masalah.⁵

Begitu juga dengan kemampuan penalaran. Kemampuan ini merupakan pondasi dalam pembelajaran matematika. Salah satu tujuan terpenting dari pembelajaran matematika ialah mengajarkan kepada siswa penalaran logika. Bila kemampuan bernalar tidak dikembangkan oleh peserta didik maka bagi siswa matematika hanya akan menjadi materi yang mengikuti serangkaian prosedur dan meniru contoh-contoh tanpa mengetahui maknanya. Selain itu jika siswa kurang

⁴ Eyus, *Ibid*,
⁵ Hesti Cahyani dan Ririn W Setyawati, "Pentingnya Peningkatan Kemampuan Manghadani Pemecahan Masalah melalui PBL untuk Mempersiapkan Generasi Unggul Menghadapi MEA", Jurnal UNNES Semarang (2016), 151.

menggunakan nalar dalam menyelesaikan masalahnya, maka akan gagal menguasai matematika dengan baik. ⁶

Karena pembelajaran matematika pada dasarnya tidak terlepas dari suatu masalah, berhasil atau tidaknya peserta didik dalam mata pelajaran matematika ditandai dengan tercapainya kemampuan yang diinginkan. Masalah utama dalam pembelajaran matematika ialah masih rendahnya daya serap peserta didik. Hal ini dapat terlihat dari hasil belajar matematika yang senantiasa masih relatif kurang. Masalah ini disebabkan beberapa faktor, diantaranya dalam kegiatan belajar mengajar guru dominan menggunakan metode ceramah, tanya jawab dan pemberian tugas individu saja. Pembelajaran yang berlangsung didominasi oleh guru, dan peserta didik jarang diberikan kesempatan untuk memperoleh pengalaman belajar secara langsung sehingga mereka tidak mampu mengembangkan kemampuan yang ia punya.

Untuk mengatasi permasalahan tersebut, dibutuhkan model pembelajaran yang dapat mengembangkan kemampuan matematis peserta didik. Model pembelajaran tersebut berisi segala proses, alur, serta sistem pembelajaran yang akan berlangsung. Model pembelajaran yang dinilai mampu ialah model pembelajaran kooperatif atau kelompok, karena dalam pembelajaran ini tujuannya tidak hanya menyelesaikan tugas yang diberikan, namun juga memastikan bahwa setiap kelompok menguasai tugas yang diterimanya.

Beberapa teknik atau model pembelajaran kooperatif adalah tipe Numbered Head Together (NHT) dan tipe Two Stay-Two Stray (TSTS). Model

⁶ Eyus, *Ibid.*, hal. 169.

⁷ Yanti Handayani, "Perbedaan Model Pembelajaran Kooperatif Tipe *Two Stay Two Stray* dan *Numbered Head Together* Terhadap Hasil Belajar", *Jurnal Ilmu dan Pendidikan STKIP PGRI Bangkalan*, Vol. 3 No. 2 (November 2019), 126.

pembelajaran tipe *Numbered Head Together* atau kepala bernomor adalah model yang memberikan kesempatan kepada siswa untuk saling memberikan ide-ide dan pertimbangan jawaban yang paling tepat, sedangkan untuk model pembelajaran tipe *Two Stay-Two Stray* atau dua tinggal dua tamu memberi kesempatan kepada kelompok untuk membagi hasil dan informasi dengan kelompok lain. Diharapkan kedua model ini mampu mengembangkan kemampuan pemecahan masalah serta kemampuan penalaran matematis peserta didik.

Berdasarkan hasil studi yang dilakukan di SMA Kartika I-2 Medan berupa observasi dan wawancara kepada salah satu siswa yang bernama Sahrul pada saat penelitian berlangsung, peneliti mendapati informasi bahwa pada saat pembelajaran matematika,guru menerangkan pembelajaran dengan cukup jelas dan peserta didik diminta untuk mengerjakan tugas-tugas yang diberikan oleh guru. Namun, guru hanya menggunakan model pembelajaran konvensional saja yakni ceramah, tanya, serta pemberian tugas. Untuk hasil belajar pun, kelas mereka menganggap paham dan dianggap paham. Dalam artian, peserta didik masih kesulitan dalam mengidentifikasi soal atau masalah yang diberikan guru. Peserta didik kurang mampu dalam menganalisis soal sehingga kemampuan dalam pemecahan masalah dan bernalarnya pun masih dianggap dibawah ratarata. Mereka hanya menjawab soal begitu saja tanpa membaca intruksi soal yang diberikan dan tanpa mengetahui apa maksud dari pemberian soal tersebut. "Kalau tidak ada instruksinya atau tidak dijelaskan bagaimana pengerjaannya, kami kurang paham bu" 8.

⁸ Hasil Wawancara Murid SMA Kartika I-2 Medan Bernama Sahrul kelas XI IPA 4 pada Februari 2020.

Berdasarkan hal-hal yang sudah dipaparkan diatas yakni keterkaitan antara penggunaan model pembelajaran terhadap kemampuan matematis peserta didik, peneliti ingin melihat apakah ada perbedaan antara model pertama dengan model kedua terhadap kemampuan matematis. Sehingga diambilah judul "Perbedaan Model Pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* terhadap Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa SMA Swasta Kartika I-2 Medan".

B. Identifikasi Masalah

Berdasarkan latar belakang masalah di atas, berikut adalah beberapa masalah yang dapat diidentifikasi:

- Siswa masih menganggap bahwa matematika merupakan pelajaran yang sulit untuk dipelajari.
- 2. Banyak siswa yang kurang aktif dalam pembelajaran matematika
- Kemampuan pemecahan masalah matematis siswa dalam pembelajaran masih rendah
- 4. Kemampuan penalaran matematis siswa dalam pembelajaran masih rendah

C. Batasan Masalah

Berdasarkan latar belakang dan identifikasi masalah yang telah diuraikan di atas, maka perlu adanya pembatasan masalah agar penelitian ini lebih terfokus pada permasalahan yang akan diteliti. Peneliti hanya meneliti siswa yang diberi model pembelajaran *Numbered Head Together* dan model pembelajaran *Two Stay-Two Stray* untuk melihat perbedaan hasil belajar siswa. Adapun hasil belajar

siswa yaitu kemampuan pemecahan masalah dan penalaran matematis siswa pada materi Limit Fungsi Aljabar.

D. Rumusan Masalah

Berdasarkan dari batasan masalah diatas, dapat dirumuskan beberapa permasalahan sebagai berikut:

- 1. Apakah terdapat perbedaan kemampuan pemecahan masalah matematis siswa antara yang diajar dengan model pembelajaran *Numbered Head Together* dan yang diajar dengan model pembelajaran *Two Stay-Two Stray*?
- 2. Apakah terdapat perbedaan kemampuan penalaran matematis siswa antara yang diajar dengan model pembelajaran *Numbered Head Together* dan yang diajar dengan model pembelajaran *Two Stay-Two Stray*?
- 3. Apakah terdapat perbedaan kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa antara yang diajar dengan model pembelajaran Numbered Head Together dan yang diajar dengan model pembelajaran Two Stay-Two Stray?
- 4. Apakah terdapat interaksi antara model pembelajaran terhadap kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa?

E. Tujuan Penelitian

Berdasarkan rumusan masalah yang ditetapkan, maka yang menjadi tujuan penelitian ini adalah:

- Untuk mengetahui perbedaan kemampuan pemecahan masalah matematis siswa antara yang diajar dengan model pembelajaran Numbered Head Together dan yang diajar dengan model pembelajaran Two Stay-Two Stray.
- 2. Untuk mengetahui perbedaan kemampuan penalaran matematis siswa antara yang diajar dengan model pembelajaran *Numbered Head Together* dan yang diajar dengan model pembelajaran *Two Stay-Two Stray*.
- 3. Untuk mengetahui perbedaan kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa antara yang diajar dengan model pembelajaran *Numbered Head Together* dan yang diajar dengan model pembelajaran *Two Stay-Two Stray*
- 4. Untuk mengetahui interaksi antara model pembelajaran terhadap kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa.

F. Manfaat Penelitian

Manfaat yang diharapkan dari penelitian ini adalah sebagai berikut:

- 1. Bagi siswa, dengan menerapkan model pembelajaran dapat memudahkan siswa untuk lebih aktif dalam pembelajaran dan juga memiliki kemampuan pemecahan masalah dan kemampuan penalaran matematis agar pembelajaran matematika dapat diterapkan dengan baik dan bermanfaat dalam kehidupan.
- Bagi guru matematika dan sekolah, memberikan alternatif cara dalam proses pembelajaran dengan menggunakan model pembelajaran yang inovatif agar dapat meningkatkan kualitas pelaksanaan pembelajaran.
- 3. Bagi peneliti, mendapatkan pengalaman langsung dan gambaran dalam pelaksanaan model pembelajaran *Numbered Head Together* dan model

pembelajaran *Two Stay-Two Stray* yang dapat meningkatkan kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa.

BAB II

LANDASAN TEORITIS

A. Kerangka Teoritis

1. Kemampuan Pemecahan Masalah Matematis

Masalah pada hakikatnya adalah bagian dalam kehidupan manusia. Dalam kehidupan pun kita juga pasi memiliki berbagai macam masalah, baik yang sederhana maupun yang sulit. Sehingga untuk memecahkan masalah tersebut, manusia dituntut untuk memiliki suatu kemampuan tertentu.

Sebagaimana dalam Al-Quran surah Al-Insyirah ayat 6-8 yang berbunyi:

Artinya: (6) Sesungguhnya bersama kesulitan ada kemudahan, (7) Maka apabila engkau telah selesai (dari suatu urusan), tetaplah bekerja keras untuk (urusan yang lain), (8) Dan hanya kepada Tuhanmulah engkau berharap."

Menurut Tafsir Jalalain ialah karena sesungguhnya sesudah kesulitan itu atau kesukaran itu ada kelapangan yakni kemudahan. Sesungguhnya sesudah kesulitan itu ada kelapangan. Nabi SAW banyak sekali mengalami kesulitan dan hambatan dari orang-orang kafir, kemudian beliau mendapatkan kelapangan dan kemudahan, yaitu setelah beliau mengalami kemenangan atas mereka. Maka apabila kamu telah selesai dari salat bersungguh-sungguhlah kamu di dalam berdoa. Dan hanya kepada Rabbmulah hendaknya kamu berharap atau meminta dengan merendahkan diri. ¹⁰

Oleh karena itu, dalam pembelajaran khususnya pembelajaran matematika, apabila mengalami kesulitan dalam pengerjaan soal atau masalah

⁹ Al-Quran dan Terjemahannya, (2010), Bandung: Dipenogoro, hal. 596.

Tafsir Learn Quran https://tafsir.learn-quran.co/id/surat-94-al-inshirah/ayat-6-8 diakses 03 Februari 2020

yang diberikan oleh guru, yakinlah bahwa segala sesuatu yang sulit akan ada titik terangnya. Segala sesuatu akan ada jalan keluarnya, mau sesusah apapun soal atau permasalahan yang diberikan tersebut. Apabila kita sudah berusaha dengan bersungguh-sungguh, maka masalah tersebut akan dapat terselesaikan atau terlewati dengan sendirinya.

Masalah dapat diartikan sebagai sebuah situasi dimana individu atau kelompok terpanggil untuk melakukan suatu tugas dimana tidak tersedia algoritma yang secara lengkap menentukan penyelesaian masalahnya. 11 Dalam hal ini berarti pertanyaan tersebut tidak dapat dijawab dengan prosedur yang dilakukan rutin, tetapi perlu kerja keras untuk mencari jawabnya. Sehingga penyelesaian/pemecahan masalah merupakan suatu upaya atau proses penerimaan tantangan dan kerja keras untuk menyelesaikan masalah tersebut. Dengan demikian, aspek penting dari makna suatu masalah adalah adanya penyelesaian yang diperoleh tidak dapat hanya dikerjakan dengan prosedur rutin, tetapi perlu penalaran yang lebih luas dan rumit.

Suatu masalah dalam matematika dapat dikatakan sebagai "tantangan" bila pemecahannya memerlukan kreativitas, pengertian, pemikiran yang asli atau imajinasi. 12 Ada beberapa masalah yang sangat menantang bagi seseorang tetapi tidak demikian halnya bagi orang lain. Jadi sesuatu yang dikatakan masalah bagi seseorang, mungkin tidak dikatakan masalah bagi orang lain.

Bandung: PT Remaja Rosdakarya, hal. 116.

Sujono, (1988), *Pelajaran Matematika untuk Sekolah Menengah*, Jakarta: P2LPTK, hal. 218.

¹¹ Endang Setyo Winarni dan Sri Harmini, (2017), Matematika untuk PGSD,

Masalah dalam matematika dapat dikelompokkan menjadi beberapa macam. Polya dalam Hudoyo mengelompokkan masalah ditinjau dari cara menganalisis masalah tersebut menjadi dua macam, yaitu:

- a. Masalah untuk menemukan, dapat berupa teoritis atau praktis, konkret, atau abstrak, termasuk teka-teki. Dengan demikian kita harus mencari semua variabel masalah tersebut, kita harus mencoba untuk mendapatkan, menghasilkan, atau mengkontruksi semua jenis objek yang dapat dipergunakan untuk menyelesaikan masalah tersebut. Untuk itu kita harus merumuskan bagian pokok dari masalah, yang nantinya sangat diperlukan sebagai landasan untuk dapat menyelesaikan masalah ini.
- b. Masalah yang berkaitan dengan membuktikan, adalah masalah untuk menunjukkan bahwa suatu pernyataan itu benar atau salah dan tidak keduanya. Untuk itu kita harus menjawab pertanyaan: Apakah pernyataan itu benar atau salah? Bagian pokok dari masalah jenis ini ialah rumusan hipotesis dan konklusi dari suatu teorema yang harus dibuktikan kebenarannya. Hipotesis dan konklusi tersebut merupakan landasan yang sangat diperlukan untuk dapat menyelesaikan masalah jenis ini. 13

Selain itu, ditinjau dari bentuk rumusan masalah dan teknik pengerjaannya, masalah dibedakan menjadi tiga macam yaitu:

a. Masalah translasi, yaitu masalah dalam kehidupan sehari-hari yang dituangkan dalam bentuk verbal yang berkaitan dengan matematika.

¹³ Endang dan Sri H, *Ibid.*, hal. 116-117.

Masalah translasi ini merupakan bentuk soal cerita yang harus dirumuskan dalam bentuk kalimat matematika.

- b. Masalah proses, yaitu masalah yang pengerjaanya diarahkan untuk menyusun langkah-langkah agar dirumuskan pola dan strategi khusus pemecahan masalahnya.
- c. Masalah teka-teki (menebak), yaitu masalah yang mengarah pada kegiatan matematika rekreasi dan membangkitkan kesenangan, sehingga tercipta penanaman sikap positif (afektif) terhadap mata pelajaran matematika.
- d. Masalah aplikasi, yaitu masalah yang memberikan kesempatan kepada peserta didik untuk menyelesaikan masalah dengan menggunkan berbagai keterampilan dan prosedur matematika. 14

Menurut John Dewey, terdapat lima langkah utama dalam pemecahan suatu masalah, urutan langkah-langkah tersebut adalah sebagai berikut:

- 1. Tahu bahwa ada masalah
- 2. Mengenali masalah tersebut
- 3. Menggunakan pengalaman yang lalu
- 4. Menguji secara berturut-turut hipotesa akan kemungkinan-kemungkinan penyelesaian
- 5. Mengevaluasi penyelesaian dan menarik kesimpulan berdasarkan buktibukti yang ada. 15

Sehingga dalam hal ini proses pemecahan masalah matematika merupakan salah satu kemampuan dasar matematika yang harus dikuasai siswa sekolah menengah. Pentingnya kemampuan tesebut tercermin dari pernyataan Branca yakni "Pemecahan masalah matematika merupakan salah

¹⁴ Endang dan Sri H, *Ibid.*, hal. 117.

¹⁵ Sujono, *Ibid.*, hal. 215-216.

satu tujuan penting dalam pembelajaran matematika bahkan proses pemecahan masalah matematika merupakan jantungnya matematika."¹⁶

Pendapat tersebut juga sejalan dengan tujuan pembelajaran Matematika yakni:

Tujuan pembelajaran matematika dalam KTSP tahun 2006 antara lain menyelesaikan masalah, berkomunikasi menggunakan simbol matematika, tabel, diagram, dan lainnya; menghargai kegunaan matematika dalam kehidupan sehari-hari, memiliki rasa tahu, perhatian, minat belajar matematika, serta memiliki sikap teliti dan konsep diri dalam menyelesaikan masalah.¹⁷

Oleh karena itu, proses kemampuan pemecahan masalah sangat diperlukan dalam proses pembelajaran matematika karena dengan proses tersebut peserta didik bisa lebih mudah menyelesaikan masalah yang diberikan oleh guru.

Adapun beberapa prinsip yang dapat digunakan sebagai rambu-rambu untuk mengembangkan keterampilan pemecahan masalah, sebagai berikut:

- 1. Identifikasi masalah
- 2. Menerjemahkan masalah ke dalam kalimat matematika, kemudian ke dalam model permasalahan yang lebih sederhana.
- 3. Menentukan alur-alur pemecahan masalah.
- 4. Menentukan jawaban numerikal, kemudian menginterpretasikan jawaban yang diperoleh.
- Mengecek kebenaran hasil, selanjutnya memodifikasi jawaban jika 5. diberikan data yang baru.

¹⁷ *Ibid*,

¹⁶ Heris Hendriana dan Utari Soemarmo, (2016), Penilaian Pembelajaran Matematika, Bandung: PT Reflika Aditama, hal. 23.

6. Melatih memecahkan masalah dan melatih membuat masalah sendiri untuk dipecahkan sendiri. 18

Dalam tahapan pemecahan masalah ini lebih singkatnya ialah: (a) memahami masalah nyata dalam kehidupan sehari-hari, (b) menyusun berbagai cara dalam menyelesaikan persoalan, (c) melaksanakan cara menyelesaikannya, dan (d) memeriksa kembali hasil yang telah didapat.

Jadi dapat disimpulkan bahwa kemampuan pemecahan matematika masalah dalam penelitian ini adalah suatu kemampuan untuk menyelesaikan suatu masalah, khususnya dalam pembelajaran matematika.

2. Kemampuan Penalaran Matematis

Penalaran merupakan serangkaian kegiatan manusia untuk sampai pada sebuah kesimpulan dari satu atau lebih keputusan yang telah diketahui. Menurut Gardner penalaran matematis adalah suatu kemampuan berpikir, menganalisis, menggeneralisasi, mensintesis/ mengintegrasikan, memberikan alasan yang tepat dan menyelesaikan masalah yang tidak rutin dalam matematika. ¹⁹

Sebagaimana dalam Al-Quran surah Al-Baqarah ayat 266 yaitu:

أَيُودُ أَحَدُكُمْ أَن تَكُونَ لَهُ جَنَّةٌ مِن نَّخِيلٍ وَأَعْنَابٍ تَجْرِى مِن تَحْتِهَا ٱلْأَنْهَارُ لَهُ فِيهَا مِن كُلِّ ٱلثَّمَرَاتِ وَأَصَابَهُ ٱلْكِبَرُ وَلَهُ وَزُرِيَّةٌ ضُعَفَآءُ فَأَصَابَهَآ إِعْصَارٌ فِيهِ نَارٌ فَٱحْتَرَقَتْ تَكَالُهُمْ تَتَفَكَّرُونَ فَأَصَابَهَآ إِعْصَارٌ فِيهِ نَارٌ فَٱحْتَرَقَتْ تَكَالُكُمْ تَتَفَكَّرُونَ فَا اللهُ لَكُمُ ٱلْأَيْتِ لَعَلَّكُمْ تَتَفَكَّرُونَ فَي

¹⁸ Endang dan Sri H, *Ibid.*, hal. 121.

¹⁹ Eka Lestari, Kurnia dan Mokhammad Ridwan Yudhanegara, (2015), *Penelitian Pendidikan Matematika*, Bandung: PT Refika Aditama, hal. 82.

Artinya: "Apakah ada salah seorang di antaramu yang ingin mempunyai kebun kurma dan anggur yang mengalir di bawahnya sungai-sungai; dia mempunyai dalam kebun itu segala macam buah-buahan, kemudian datanglah masa tua pada orang itu sedang dia mempunyai keturunan yang masih kecil-kecil. Maka kebun itu ditiup angin keras yang mengandung api, lalu terbakarlah. Demikianlah Allah menerangkan ayat-ayat-Nya kepada kamu supaya kamu memikirkannya".²⁰

Pentingnya kemampuan penalaran dalam proses pembelajaran matematika menekankan pada aktivitas penalaran dan pemecahan masalah yang sangat erat kaitannya dengan pencapaian prestasi siswa yang tinggi.²¹

Dengan demikian jelaslah dapat dikatakan bahwa penalaran merupakan kegiatan atau proses, aktivitas berpikir untuk menarik kesimpulan atau membuat suatu pernyataan baru berdasarkan pada beberapa pernyataan yang diketahui atau dianggap benar. Dengan kata lain penalaran merupakan suatu proses berpikir sistematis dan logis dalam menyelesaikan masalah untuk menarik kesimpulan.

Terdapat dua jenis penalaran, yakni penalaran induktif dan penalaran deduktif. Penalaran induktif merupakan kemampuan seseorang dalam menarik kesimpulan yang bersifat umum melalui pernyataan yang bersifat khusus. Sedangkan penalaran deduktif merupakan proses berpikir untuk

²⁰ Al-Quran dan Terjemahannya

²¹ As'r Musrimin, "Efektivitas Pendekatan Pembelajaran Matematika Realistik dalam Meningkatkan Kemampuan Penalaran Matematika Siswa Kelas VII SMP Negeri 8 Kendari", *Jurnal Univeristas Pendidikan Indonesia* (2011), 27.

menarik kesimpulan tentang hal khusus yang berpijak pada hal umum atau hal yang sebelumnya telah dibuktikan kebenarannya.²²

Peserta didik dikatakan mampu melakukan penalaran matematika bila ia mampu menggunakan penalaran pada pola dan sifat, melakukan manipulasi matematika dalam membuat generalisasi, menyusun bukti, atau menjelaskan gagasan dan pernyataan matematika.²³

Terdapat beberapa indikator siswa yang memiliki kemampuan penalaran matematika, yakni sebagai berikut:

- 1. Membuat generalisasi untuk mengajukan dugaan
- 2. Melakukan manipulasi matematika
- Menarik kesimpulan, memberikan alasan atau bukti terhadap kebenaran solusi
- 4. Memeriksa kesahihan suatu argument
- 5. Menemukan pola atau sifat dari gejala matematis untuk membuat generalisasi.²⁴

Singkatnya, lebih jelas lagi bila indikator yang digunakan dalam kemampuan matematis diuraikan menjadi (1) membuat generalisasi untuk memperkirakan jawaban, (2) melakukan suatu manipulasi matematika, (3) menggunakan pola dan hubungan untuk menganalisis situasi matematika tersebut, dan (4) menarik kesimpulan.

²³ Arif Rohman, (2014), *Epistimologi dan Logika Filsafat Untuk Pengembangan Pendidikan*, Yogyakarta: Aswaja Presindo, hal. 170.

²² Nahrowi Adji dan Deti Rostika, (2006), *Konsep Dasar Matematika*, Bandung: UPI Press, hal. 3.

²⁴ Jonathan Ling, (2011), *Psikologi Kognitif*, Jakarta: PT Gelora Aksara Pratama, hal. 190.

Secara umum terdapat faktor-faktor yang mempengaruhi kemampuan penalaran matematis siswa adalah sebagai berikut:

- Faktor-faktor yang bersumber dari dalam diri individu, dapat diklasifikasikan menjadi dua yaitu:
 - a. Faktor biologis, yakni usia, kematangan, dan kesehatan.
 - Faktor psikologis, yakni kelelahan, suasana hati, motivasi, minat dan kebiasaan belajar.
- Faktor-faktor yang bersumber dari luar diri individu, dapat diklasifikasikan menjadi dua yaitu:
 - a. Lingkungan
 - Faktor instrumen, yakni kurikulum, program, sarana dan fasilitas, serta guru.²⁵

Dapat dipahami bahwa faktor-faktor yang mempengaruhi penalaran matematis siswa yaitu meliputi 2 faktor, yakni faktor internal dan faktor eksternal, faktor dari dalam diri individu/siswa serta faktor dari luar individu/siswa.

Jadi dapat disimpulkan bahwa kemampuan penalaran matematis dalam penelitian ini adalah kemampuan menganalisis, menggeneralisasi, mensintesis, memberikan alasan yang tepat, dan menyelesaikan masalah yang tidak rutin dalam matematika.

3. Model Pembelajaran Numbered Head Together

a. Pengertian Model Pembelajaran

.

²⁵ Jonathan Ling, *Ibid.*, hal. 192.

Secara umum istilah model diartikan sebagai suatu kerangka konseptual yang digunakan sebagai pedoman atau acuan dalam melakukan suatu kegiatan. Dalam pengertian lain, model juga diartikan sebagai barang atau benda tiruan dari benda sesungguhnya, misalnya globe yang merupakan bentuk dari bumi. Selanjutnya istilah model juga digunakan untuk menunjukkan pengertian pertama sebagai kerangka proses pemikiran.

Kemudian pembelajaran dapat diartikan sebagai proses kerja sama antara guru dan peserta didik dalam memanfaatkan segala potensi dan sumber yang ada baik potensi yang bersumber dari dalam diri peserta didik itu sendiri seperti minat, bakat dan kemampuan dasar yang dimiliki termasuk gaya belajar maupun potensi yang ada diluar diri peserta didik seperti lingkungan, sarana dan sumber belajar sebagai upaya untuk mencapai tujuan belajar tertentu.²⁶

Sedangkan model pembelajaran ialah suatu pola berproses yang digunakan sebagai pedoman dalam merencanakan aktivitas pembelajaran. Model pembelajaran juga merupakan konsep yang dapat digunakan untuk merepresentasikan pembelajaran sebagai upaya memadukan suatu materi, keterampilan, serta topik yang termasuk dalam kegiatan belajar mengajar.²⁷

Model pembelajaran dapat pula dimaksud sebagai suatu kerangka konseptual yang menggambarkan prosedur sistematis dalam mengorganisasikan pengalaman belajar untuk mencapai tujuan belajar. Fungsi model pembelajaran ialah sebagai pedoman bagi perancang pengajaran dan para guru dalam melaksanakan pembelajarannya. Pemilihan model pembelajaran sangat dipengaruhi oleh sifat atau karakter dari materi

²⁷ Eko Setiawan, (2018), *Pembelajaran Tematik Teoritis & Praktis*, Jakarta: Erlangga, hal. 34.

²⁶ Wina Sanjaya, (2008), *Perencanaan dan Desain Sistem Pembelajaran*, Jakarta: Prenada Media Group, hal. 25.

yang akan diajarkan, tujuan yang akan dicapai dalam pembelajaran tersebut, serta tingkat kemampuan peserta didik.²⁸

Model pembelajaran sangat erat kaitannya dengan gaya belajar peserta didik (*learning style*) dan gaya mengajar guru (*teaching style*) yang keduanya disingkat menjadi SOLAT (*Style Of Learning and Teaching*).²⁹

Model pembelajaran mempunyai empat ciri khusus atau karakteristik, yaitu:

- 1) Rasional teoritis serta logis yang disusun oleh para pencipta atau pengembangnya.
- 2) Landasan pemikiran tentang apa dan bagaimana peserta didik belajar.
- 3) Tingkah laku mengajar yang diperlukan agar model tersebut dapat dilaksanakan dengan baik.
- 4) Lingkungan belajar yang diperlukan agar tujuan pembelajaran itu dapat tercapai dan berhasil.³⁰

Agar model pembelajaran menghasilkan rencana yang efektif dan efisien, terdapat prinsip-prinsip yang patut diperhatikan, yaitu sebagai berikut:

- 1. Model pembelajaran hendaknya mempunyai dasar nilai yang jelas.
- 2. Model pembelajaran berangkat dari suatu tujuan umum.
- 3. Model pembelajaran harus bersifat realistis yang disesuaikan dengan sumber daya dan dana yang tersedia.
- 4. Model pembelajaran mempertimbangkan kondisi sosial budaya masyarakat yang ada.
- 5. Model pembelajaran bersifat fleksibel.³¹

²⁸ Trianto, (2011), *Model Pembelajaran Terpadu: Konsep, Strategi, dan Implementasinya dalam KTSP*, Jakarta: PT Bumi Aksara, hal. 52.

Trianto, (2011), *Mendesain Model Pembelajaran Inovatif-Progresif*, Jakarta: Kencana Prenada Media Group, hal. 22-23.

³¹Agus Suprijono, (2016), *Model-Model Pembelajaran Emansipatoris*, Yogyakarta: Pustaka Belajar, hal. 56-57.

²⁹ Nanang Hanafiah & Cucu Suhana, (2012), *Konsep Strategi Pembelajaran*, Bandung: PT Refika Aditama, hal. 41.

Maka berdasarkan pemaparan diatas dapat disimpulkan bahwa model pembelajaran merupakan bentuk pembelajaran yang tergambar dari awal sampai akhir yang disajikan secara khas oleh guru. Dengan kata lain, model pembelajaran merupakan bungkus atau bingkai dari penerapan suatu pendekatan, metode, dan teknik dalam pembelajaran.

b. Model Pembelajaran Numbered Head Together

Model NHT adalah merupakan salah satu pembelajaran kooperatif yang dirancang untuk mempengaruhi pola interaksi siswa dan sebagai alternatif terhadap kelas tradisional. Pembelajaran kooperatif ditandai oleh: (a) peserta didik bekerja dalam kelompok untuk mencapai tujuan pembelajaran, (b) kelompok heterogen, (c) sistem reward yang berorientasi pada kelompok maupun individu. 32

Pembelajaran kooperatif (cooperative learning) merupakan sistem pembelajaran yang memberi kesempatan kepada anak didik untuk bekerja sama dengan sesama siswa dalam tugas-tugas yang terstruktur. Pembelajaran kooperatif dikenal dengan pembelajaran secara berkelompok. Tetapi belajar kooperatif lebih dari sekedar belajar kelompok atau kerja kelompok karena dalam belajar kooperatif ada struktur dorongan atau tugas yang bersifat kooperatif sehingga memungkinkan terjadinya interaksi secara terbuka dan hubungan yang bersifat interdepedensi efektif diantara anggota kelompok.³³

Model NHT dikembangkan oleh Spencer Kagan pada tahun 1993, melibatkan banyak siswa dalam menelaah materi yang tercangkup dalam

Agus Suprijono, *Ibid.*, hal. 197.
 Tukiran T, dkk., (2011), *Model-model Pembelajaran Inovatif*, Bandung: Alfabeta, hal. 55-56.

suatu pelajaran dan mengecek pemahaman mereka terhadap isi materi tersebut.³⁴ Teknik ini memberikan kesempatan kepada siswa untuk saling membagi ide-ide dan mempertimbangkan jawaban yang paling tepat. Selain itu teknik ini juga mendorong siswa untuk meningkatkan semangat kerja sama mereka. Teknik ini juga digunakan dalam semua mata pelajaran dan semua tipe anak didik. Tujuan Tipe Kepala Berkelompok (*Numbered Head Together*) yaitu untuk memberikan kesempatan kepada siswa untuk saling membagi ide dan mempertimbangkan jawabannya yang paling tepat.³⁵

Dalam mengajukan pertanyaan kepada seluruh kelas, guru menggunakan struktur empat fase sebagai sintaks NHT :

1. Fase 1: Penomoran

Dalam fase ini, guru membagi siswa ke dalam kelompok 5-6 orang dan kepada setiap anggota kelompok diberi nomor antara nomo 1 sampai 6.

2. Fase 2: Mengajukan Pertanyaan

Guru mengajukan sebuah pertanyaan kepada siswa. Pertanyaannya bervariasi. Pertanyaan dapat amat spesifik dan dalam bentuk kalimat tanya. Misalnya, "berapakah jumlah gigi anak remaja?" atau berbentuk arahan, misalnya "pastikan setiap orang mengetahui 5 buah ibu kota provinsi yang terletak di Pulau Jawa."

3. Fase 3: Berpikir Bersama

³⁴ Trianto, *Ibid.*, hal. 82.

³⁵Suderajat, Muslihuddin, dan Ujang Hendara, (2012), *Revolusi Mengajar*, Bandung: HDP Press, hal. 64-65.

Siswa menyatukan pendapatnya terhadap jawaban pertanyaan yang diajukan dan meyakinkan tiap anggota dalam timnya mengetahui jawaban tim yang telah didiskusikan.

4. Fase 4: Menjawab

Guru memanggil satu nomor tertentu, kemudian siswa yang nomornya sesuai dengan yang dipanggil mengacungkan tangannya dan mencoba untuk menjawab pertanyaan untuk seluruh kelas. Hal ini dilakukan terus menerus hingga semua peserta didik dengan nomor yang sama dari tiap kelompok memaparkan jawaban atas pertanyaan guru. Berdasarkan jawaban-jawaban yang dipaparkan guru dapat mengembangkan diskusi lebih dalam, sehingga peserta didik dapat menemukan jawaban dari pertanyaan tersebut sebagai pengetahuan yang utuh dan membuat kesimpulan. ³⁶

Dalam membuat kesimpulan, dibutuhkan pengambilan keputusan yang tepat agar kesimpulan yang dibuat merupakan kesimpulan yang paling baik. Pengambilan keputusan merupakan proses memilih suatu alternatif cara bertindak dengan metode yang efisien sesuai situasi.³⁷ Proses ini dibutuhkan untuk menemukan dan menyelesaikan suatu masalah.

Atau lebih rinci dalam bentuk tabel:

Tabel 2.1 Sintaks Model Pembelajaran NHT

No	Tahapan/Lan gkah	Aktivitas Guru	Aktivitas Siswa
1	Penomoran	Guru membagi siswa ke dalam	Siswa mendapatkan
		kelompok 5-6 orang, dan	nomor yang berbeda

³⁶Imas Kurniasih dan Berlin Sani, (2016), *Ragam Pengembangan Model Pembelajaran Untuk Peningkatan Profesionalitas Guru*, Jakarta: Kata Pena, hal. 29.

³⁷ Candra Wijaya dan Muhammad Rifa'I, (2016), *Dasar-Dasar Manajemen*, Medan: Perdana Publishing, hal. 161.

		memberikan nomor 1-6 kepada masing-masing siswa tiap kelompok.	dengan siswa yang lainnya.
2	Managinlaga	*	Managinally mantanassan
2	Mengajukan	Guru mengajukan pertanyaan	Menyimak pertanyaan
	Pertanyaan	kepada siswa.	yang diberikan guru.
3	Berpikir	Memberikan arahan kepada	Siswa menyatukan
	Bersama	siswa untuk berdiskusi	pendapatnya terhadap
		mengenai jawabannya.	pertanyaan yang
			diberikan dan
			meyakinkan tiap
			anggota dalam tim
			mengetahui
			jawabannya.
4	Menjawab dan	Guru memanggil nomor	Siswa yang nomornya
-	Menyimpulka	tertentu secara acak. Guru	disebutkan menjawab
	n	menyimpulkan pembelajaran.	pertanyaan untuk
			seluruh kelas. Serta
			siswa mendengarkan
			arahan dan kesimpulan
			guru.

Dalam model pembelajaran ini guru juga dituntut mampu memahami situasi dan kondisi kelas agar tujuan pembelajaran yang diinginkan dapat tercapai. Guru diharapkan memiliki standar kompetensi guru mata pelajaran untuk taraf sekolah menengah yakni antara lain kompetensi pedagogik agar menguasai karakter peserta didik, kompetensi kepribadian agar bertindak sesuai norma, kompetensi sosial agar bersikap inklusif dan objektif, serta kompetensi professional agar menguasai keseluruhan kondisi.³⁸

Langkah-langkah Model pembelajaran NHT, yaitu:

- 1. Siswa dibagi dalam kelompok, setiap siswa dalam setiap kelompok mendapat nomor.
- 2. Guru memberikan tugas dan masing-masing kelompok mengerjakannya.
- 3. Kelompok mendiskusikan jawaban yang di anggap paling benar dan memastikan setiap anggota kelompoknya mengetahui jawabannya.
- 4. Guru mengambil salah satu nomor siswa yang mana nomor yang

³⁸ Rusydi Ananda dan Amiruddin, (2017), *Inovasi Pendidikan*, Medan: CV Widya Puspita, hal. 224-229.

- dipanggil melaporkan hasil kerja mereka.
- 5. Tanggapan dari teman yang lain, kemudian guru menunjuk nomor yang lain.
- Membuat kesimpulan.³⁹ 6.

Kelebihan Model pembelajaran HNT yaitu:

- 1. Semua siswa mempunyai kesempatan yang sama baik dalam menjawab pertanyaan dari guru maupun mengungkapkan tugas yangdiperolehnya.
- 2. Siswa selalu mempersiapkan diri untuk memahami meteri yang dipelajarinya.
- Diskusi yang dilakukan dalam kelompok semakin bersungguh- sungguh 3. karena mempersiakan diri dalam memahami materi yang dipelajari.
- 4. Terdapat tutor sebaya (peer teaching) di dalam kelompok.
- Tidak ada murid yang mendominasi dalam kelompok karena ada nomor 5. yang mendominasi.⁴⁰

Kekurangan Model pembelajaran NHT yaitu:

- 1. Ada kemungkinan guru memanggil nomor yang sebelumnya sudah dipanggil.
- Ada kemungkinan ada nomor yang sama sekali belum dipanggil.⁵¹ 2.
- 3. Terlalu banyak memakai waktu dalam mengkondisikan kelas.
- 4. Terkadang di dalam pengelompokan terjadi kesenjangan antara yang pintar dan yang kurang pintar.
- 5. Tidak menuntut kemungkinan jika di dalam tim hanya beberapa anggota yang bertanggung jawab dan mengerjakan tugasnya dengan baik.41

Dapat disimpulkan bahwa model pembelajaran numbered head together dalam penelitian ini adalah suatu model yang memberikan kesempatan kepada siswa untuk saling membagi ide-ide dan mempertimbangkan jawaban yang paling tepat.

³⁹ Tukiran T, dkk. (2017), Model-Model Pembelajaran Inovatif dan Efektif,

Bandung: Alfabeta, hal. 75.

Aris Shoimin, (2014), 68 Model Pembelajaran Inovatif dalam Kurikulum 2013, Yogyakarta: Ar-Ruz Media, hal. 109.

⁴¹Suderajat, *Ibid.*, hal. 250.

4. Model Pembelajaran Two Stay-Two Stray

a. Pengertian Model Pembelajaran

Model pembelajaran merupakan suatu perencanaan atau suatu rancangan yang digunakan sebagai pedoman dalam merencanakan pembelajaran di kelas atau pembelajaran didalam tutorial. Model pembelajaran mengacu pada pendekatan pembelajaran yang akan digunakan, termasuk didalamnya tujuan-tujuan pembelajaran, tahap-tahap dalam kegiatan pembelajaran, lingkungan pembelajaran, serta pengelolaan kelas. 42

b. Model Pembelajaran Two Stay-Two Stray

Model-model pembelajaran kooperatif bersifat unik karena dalam pembelajaran kooperatif suatu struktur tugas dan penghargaan yang berbeda diberikan dalam mengupayakan pembelajaran siswa. Dalam model pembelajaran kooperatif selain model NHT yaitu ada model Dua Tinggal Dua Tamu (*Two Stay-Two Stray*) disingkat TSTS.

Model pembelajaran Dua Tinggal Dua Tamu (*Two Stay-Two Stray*) dikembangkan oleh Spencer Kagan pada tahun 1992. Struktur model pembelajaran ini memberi kesempatan kelompok untuk membagikan hasil dan informasi dengan kelompok lain. Dalam artian dua orang siswa tinggal di kelompok dan dua orang siswa bertamu ke kelompok lain. Dua orang yang tinggal bertugas memberikan informasi kepada tamu tentang hasil

⁴² Trianto, *Ibid.*, hal. 51.

kelompoknya, sedangkan yang bertamu bertugas mencatat hasil diskusi kelompok yang dikunjunginya.⁴³

Model pembelajaran kooperatif tipe Dua Tinggal Dua Tamu (*Two Stay -Two Stray*) ini merupakan salah satu bentuk model pembelajaran yang berpusat pada siswa dan membantu siswa untuk aktif dalam proses pembelajaran. Tujuan penggunaan model ini agar siswa dapat memecahkan masalah yang diberikan dan saling membagikan ide-idenya dalam menyelesaikan suatu persoalan didalam kelompok.

Ciri-ciri model pembelajaran TSTS, yaitu (a) siswa bekerja dalam kelompok secara kooperatif untuk menuntaskan materi belajarnya, (b) kelompok dibentuk dari siswa yang memiliki kemampuan tinggi, sedang dan rendah, (c) bila mungkin anggota kelompok berasal dari ras, budaya, suku, jenis kelamin yang berbeda dan (d) penghargaan lebih berorientasi pada kelompok dari pada individu.

Adapun tahapan-tahapan atau sintaks dalam model pembelajaran TSTS ini, yaitu sebagai berikut:

1. Persiapan

Pada tahap ini, hal yang dilakukan guru adalah membuat silabus dan sistem penilaian, desain pembelajaran, menyiapkan tugas siswa dan membagi siswa menjadi beberapa kelompok dengan masing-masing anggota 4 siswa. Setiap anggota kelompok harus heterogen berdasarkan prestasi akademik siswa.

2. Presentasi Guru

⁴³ Aris Shoimin, *Ibid.*, hal. 222.

Pada tahap ini guru menyampaikan indikator pembelajaran, mengenal dan menjelaskan materi sesuai dengan rencana pembelajaran yang telah dibuat. Dalam penyampaian dan penjelasan materi, guru diharapkan memberikaan segala sesuatu yang sempurna, bernilai benar, diharapkan anak murid, memberikan kepuasan, memberikan perasaan senang atau bahagia, sehingga dihargai secara positif.⁴⁴

3. Kegiatan Kelompok

Pada tahap ini pembelajaran menggunakan lembar kegiatan yang berisi tugas-tugas yang harus dipelajari oleh tiap-tiap siswa dalam satu kelompok. Setelah menerima lembar kegiatan yang berisi permasalahan-permasalahan yang berkaitan dengan konsep materi dan klasifikasinya, siswa mempelajarinya dalam kelompok kecil (4 siswa), yaitu mendiskusikan masalah tersebut bersama-sama anggota kelompoknya. Masing-masing kelompok menyelesaikan atau memecahkan masalah yang diberikan dengan cara mereka sendiri. Kemudian, 2 dari 4 anggota dari masing-masing kelompok meninggalkan kelompoknya dan bertamu ke kelompok yang lain, sementara 2 anggota yang tinggal dalam kelompok bertugas menyampaikan hasil kerja dan informasi mereka ke tamu. Setelah memperoleh informasi dari 2 anggota yang tinggal, tamu mohon diri untuk kembali ke kelompok masing-masing dan melaporkan temuannya serta mencocokkan dan membahas hasil-hasil kerja mereka.

4. Formalisasi

⁴⁴ Miswar, dkk., (2015), *Akhlak Tasawuf*, Medan: Perdana Publishing, hal. 31.

Setelah belajar dalam kelompok dan menyelesaikan permasalahan yang diberikan, salah satu kelompok mempresentasikan hasil diskusi kelompoknya untuk dikomunikasikan atau didiskusikan dengan kelompok lainnya. Kemudian guru membahas dan mengarahkan siswa ke bentuk formal.

5. Evaluasi kelompok dan penghargaan

Tahap evaluasi dilakukan untuk mengetahui seberapa besar kemampuan siswa memahami materi yang telah diperoleh dengan menggunakan model pembelajaran kooperatif model TSTS. Masing-masing siswa diberi kuis yang berisi pertanyaan-pertanyaan dari hasil pembelajaran dengan model TSTS, yang selanjutnya dilanjutkan dengan pemberian penghargaan kepada kelompok yang mendapatkan skor rata-rata tertinggi.⁴⁵

Atau lebih rinci dalam bentuk tabel:

Tabel 2.2 Sintaks Model Pembelajaran TSTS

No	Tahapan/Langkah	Aktivitas Guru	Aktivitas Siswa
1	Persiapan	Guru membuat silabus dan	Mendengarkan dan
		sistem penilaian, desain	mengikuti arahan guru.
		pembelajaran, menyiapkan	
		tugas siswa dan membagi	
		siswa menjadi beberapa	
		kelompok dengan masing-	
		masing anggota 4 siswa.	
2	Presentasi Guru	Guru menyampaikan	Siswa mendengarkan
		indikator pembelajaran,	penjelasan guru dan
		mengenalkan dan	memberikan feedback
		menjelaskan materi.	yang baik terhadap apa
			yang dilakukan guru.
3	Kegiatan	Guru memberikan lembar	Mendiskusikan masalah
	Kelompok	kegiatan yang berisi tugas-	bersama anggota
		tugas yang harus	kelompoknya. 2 dari 4
		diselesaikan siswa.	anggota masing-masing
			kelompok meninggalkan

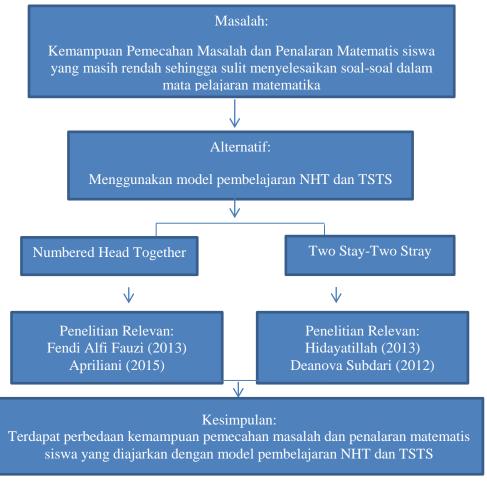
⁴⁵ Aris Shoimin, *Ibid.*, hal. 223-224.

			kelompoknya dan bertamu ke kelompok yang lain, sementara 2 anggota yang tinggal dalam kelompok bertugas menyampaikan hasil kerja dan informasi mereka ke tamu. Setelah itu mencocokkan dan membahas hasil-hasil kerja mereka.
4	Formalisasi	Guru membahas dan mengarahkan siswa ke bentuk formal.	Mempresentasikan hasil diskusi kelompok untuk didiskusikan dengan kelompok lain
5	Evaluasi Kelompok dan Penghargaan	Guru mencari tahu seberapa besar kemampuan siswa. Memberi kuis, serta memberikan penghargaan kepada kelompok dengan skor tertinggi.	Mengerjakan kuis, mendengarkan serta menerima arahan guru.

Kelebihan pembelajaran Kooperatif Model TSTS yaitu:

- 1. Mudah dipecah menjadi berpasangan
- 2. Lebih banyak tugas yang bisa dilakukan
- 3. Guru mudah memonitor
- 4. Dapat diterapkan pada semua kelas/tingkatan
- 5. Kecenderungan belajar siswa menjadi lebih bermakna
- 6. Lebih berorientasi pada keaktifan
- 7. Diharapkan siswa akan akan berani mengungkapkan pendapatnya
- 8. Menambah kekompakan dan rasa percaya diri siswa
- 9. Kemampuan berbicara siswa dapat ditingkatkan
- 10. Membantu meningkatkan minat dan prestasi belajar.

Kekurangan pembelajaran Kooperatif Model TSTS yaitu:


- 1. Membutuhkan waktu yang lama
- 2. Siswa cenderung tidak mau belajar dalam kelompok
- 3. Bagi guru, membutuhkan banyak persiapan
- 4. Guru cenderung kesulitan dalam pengelolaan kelas
- 5. Membutuhkan waktu lebih lama
- 6. Membutuhkan sosialisasi yang lebih baik
- 7. Jumlah genap bisa menyulitkan pembentukan kelompok
- 8. Siswa mudah melepaskan diri dari keterlibatan dan tidak memerhatikan guru

9. Kurang kesempatan untuk memerhatikan guru. 46

Dapat disimpulkan bahwa model pembelajaran *two stay-two stray* dalam penelitian ini adalah model pembelajaran yang terdiri dari empat orang, dimana dua orang siswa tinggal dikelompok dan dua orang siswa lainnya bertamu ke kelompok lain. Dua orang yang tinggal bertugas memberikan informasi kepada tamu tentang hasil kelompoknya, sedangkan yang bertamu bertugas mencatat hasil diskusi kelompok yang dikunjunginya.

B. Kerangka Berpikir

Grafik 2.1 Kerangka Berpikir

⁴⁶ Aris Shoimin, *Ibid.*, hal. 225.

1. Model pembelajaran *two stay-two stray* lebih baik pengaruhnya daripada model pembelajaran *numbered head together* bagi siswa yang memiliki kemampuan pemecahan masalah matematis

Sesuai pemaparan materi penjelasan tentang model pembelajaran yakni, *numbered head together* dan *two stay-two stray*, meskipun keduanya sama-sama merupakan pembelajaran kooperatif yang mana merupakan pembelajaran berkelompok guna mengembangkan kemampuan yang ada dalam diri peserta didik, namun antara keduanya memiliki sistem atau prosedur pembelajaran yang berbeda.

Dan juga antara keduanya memiliki tolak ukur yang berbeda dalam menilai kemampuan peserta didik, salah satunya dalam kemampuan pemecahan masalah matematika. Dalam kemampuan pemecahan masalah matematika, memerlukan setidaknya beberapa variasi argument atau pendapat dalam mengidentifikasi masalah, memahami masalahnya, merencanakan pemecahannya, serta memeriksa kembali prosedur dan hasil penyelesaiannya.

Untuk mewujudkan hal tersebut, dibutuhkan prosedur pembelajaran yang memiliki satu tujuan atau satu fokus diskusi yang sama. Dalam hal ini, terlihatlah perbedaaan antara model pembelajaran numbered head together dan two stay-two stray terhadap kemampuan pemecahan masalah matematika. Model numbered head together dinilai memiliki satu fokus diskusi saja, sedangkan two stay-two stray memiliki setidaknya dua fokus diskusi.

Maka dari itu, diduga terdapat perbedaan kemampuan pemecahan masalah matematika siswa yang diajar dengan model pembelajaran numbered head together dan two stay-two stray.

2. Model pembelajaran *two stay-two stray* lebih baik pengaruhnya daripada model pembelajaran *numbered head together* bagi siswa yang memiliki kemampuan penalaran matematis

Beda halnya dengan kemampuan pemecahan masalah matematika, kemampuan penalaran matematis dalam prosedur pembelajarannya dituntut untuk membuat generalisasi atau model matematika untuk memperkirakan jawaban, melakukan manipulasi matematika dalam dugaan-dugaan argument atau pendapat diskusi tentang suatu masalah, menggunakan pola dan hubungan dalam berpendapat, serta menarik kesimpulan.

Dalam hal ini, sesuai dengan prosedur pembelajaran yang berbeda antara model *numbered head together* dan *two stay-two stray*, maka tolak ukur untuk menilai kemampuan penalaran matematis jugalah berbeda. Model *Numbered Head Together* lebih memiliki prosedur yang menjunjung tinggi kerja sama dalam tim, sedangkan *Two Stay-Two Stray* memiliki prosedur untuk lebih memahami berbagai macam masalah atau fokus diskusi.

Maka dari itu, diduga terdapat perbedaan kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *numbered head* together dan two stay-two stray.

3. Model pembelajaran *two stay-two stray* lebih baik pengaruhnya daripada model pembelajaran *numbered head together* bagi siswa yang memiliki kemampuan pemecahan masalah dan penalaran matematis

Tujuan pada model pembelajaran *Numbered Head Together* adalah untuk meningkatkan kemampuan bekerja sama dalam tim, bernalar, analitis serta sistematis dan logis dalam memecahkan masalah matematika. Kemudian siswa mencoba menerapkan atau menjelaskan hasil yang diperoleh dalam memecahkan masalah matematika sehingga siswa dapat melatih kemampuan pemecahan masalahnya serta kemampuan penalarannya dalam menyelesaikan suatu permasalahan matematika.

Sedangkan untuk model pembelajaran *Two Stay-Two Stray*, adalah untuk meningkatkan keterampilan penalaran serta keterampilan berkomunikasi, yaitu berbicara atau berdiskusi kepada kelompok lain mengenai sebuah informasi. Sehingga dapat dilihat bahwa terdapat perbedaan antara kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model pembelajaran *numbered head together* maupun model pembelajaran *two stay-two stray*.

Maka dari itu, diduga terdapat perbedaan kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model pembelajaran *numbered head together* dan *two stay-two stray*.

4. Terdapat pengaruh interaksi antara model pembelajaran terhadap kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa.

Sesuai dengan permasalah yang menjadi bahan topik atau fokus dalam penelitian ini, ingin dilihat apakah terdapat perbedaan antara pembelajaran model yang satu dengan model yang lainnya. Terlepas dari itu, terlebih lagi ingin dilihat apakah terdapat pengaruh antara pembelajaran dengan model dan pembelajaran secara konvensional terhadap kemampuan siswa.

Apakah bisa dinilai lebih baik pembelajaran yang dilakukan dengan model dari pada pembelajaran biasa secara konvensional. Namun setelah banyak penelitian yang dilakukan mengenai penggunaan model pembelajaran, telah tampak terlihat bahwa terdapat pengaruh antara model pembelajaran terhadap kemampuan.

Apabila berpengaruh, maka terdapat interaksi. Oleh karena itu, dapat disimpulkan bahwa terdapat interaksi antara model pembelajaran terhadap kemampuan siswa, baik itu kemampuan pemecahan masalah maupun kemampuan penalaran matematis siswa.

Maka dari itu, diduga terdapat interaksi antara model pembelajaran terhadap kemampuan pemecahan masalah dan penalaran matematis siswa.

C. Penelitian yang Relevan

Penelitian Fendi Alfi Fauzi tentang Pengaruh Penggunaan Model
 Pembelajaran Kooperatif tipe NHT terhadap Kemampuan Pemecahan
 Masalah Matematika Siswa menunjukkan bahwa dari hasil pengujian t hitung
 t tabel yaitu t hitung = 2,02 dan nilai t tabel = 1,67 yang mana artinya
 kemampuan pemecahan masalah matematika siswa yang mengikuti

pembelajaran dengan menggunakan model pembelajaran kooperatif tipe NHT lebih tinggi dari pada kemampuan pemecahan masalah matematika siswa yang mengikuti pembelajaran dengan menggunakan model pembelajaran konvensional, serta mendapatkan rata-rata skor kemampuan pemecahan masalah matematika dengan model NHT adalah 68,259 sedangkan yang menggunakan pembelajaran konvensional adalah 62,572.⁴⁷

- 2. Penelitian Apriliani tentang *Pengaruh Model Pembelajaran Kooperatif tipe*NHT terhadap Kemampuan Pemecahan Masalah Matematik menunjukkan bahwa uji pre-test kelas eksperimen memperoleh rata-rata sebesar 53,57 dan kelas control memperoleh rata-rata sebesar 48,22. Sedangkan pada post-test kelas eksperimen memperoleh rata-rata 75,57 dan kelas control memperoleh rata-rata 56,74. Selain dilihat dari hasil uji pre-test dan post-test, dapat juga dilihat dari hasil uji t post-test, yaitu 0,004. Dilihat dari hasilnya bahwa Ho ditolak karena kedua kelas memiliki perbedaan. Sehingga dapat disimpulkan bahwa kemampuan pemecahan masalah matematik siswa pada kelas eksperimen yang menggunakan model pembelajaran kooperatif tipe NHT lebih baik dibandingkan dengan siswa kelas kontrol yang menggunakan model pembelajaran konvensional.⁴⁸
- 3. Penelitian Hidayatilah tentang Perbedaan Kemampuan Pemecahan Masalah Matematis Siswa yang Mendapatkan Model Pembelajaran Kooperatif tipe Two Stay-Two Stray dengan yang Mendapatkan Model Pembelajaran

⁴⁷ Fendi Alfi Fauzi, "Pengaruh Penggunaan Model Pembelajaran Kooperatif Tipe *Numbered Head Together* terhadap Kemampuan Pemecahan Masalah Matematika Siswa", *Skripsi Jurusan Pend. Matematika FMIPA Univ. Negeri Gorontalo* (2013), 3.

⁴⁸ Apriliani, "Pengaruh Model Pembelajaran Kooperatif Tipe NHT terhadap Kemampuan Pemecahan Masalah Matematik dalam Materi Operasi Hitung Campuran pada Pecahan", *Skripsi Universitas Pendidikan Indonesia* (2015), 3.

Numbered Head Togetther menunjukkan bahwa, (1) terdapat perbedaan kemampuan pemecahan masalah matematis siswa yang mendapatkan model pembelajaran Two stay-Two Stray dengan yang mendapatkan model pembelajaran Numbered head Together; (2) sikap siswa terhadap model pembelajaran Two Stay-Two Stray dan model pembelajaran Numbered Head Together secara umum siswa bersikap baik terhadap kedua model pembelajaran tersebut.⁴⁹

- 4. Penelitian Eyus Sudihartinih tentang *Meningkatkan Kemampuan Penalaran Matematik Siswa SMA melalui Pembelajaran Menggunkan tugas Superitem* menunjukkan bahwa setelah dilakukan perhitungan diperoleh nilai Sig (2-tailed) = 0,009 sehingga Sig (1-tailed) = 0,0045 kurang dari 0,05. Artinya pada taraf signifikansi 5% Ho ditolak. Dengan demikian peningkatan penalaran matematik siswa yang pembelajarannya dengan menggunakan teknik SOLO/Superitem lebih baik bila dibandingkan dengaan siswa yang pembelajarannya secara konvensional.⁵⁰
- 5. Penelitian Deanova Sundari Sitompul tentang *Perbedaan Hasil Belajar Siswa*Menggunakan Model Pembelajaran Koperatif tipe Numbered Head Together

 dengan Two Stay-Two Stray menunjukkan bahwa adanya perbedaan hasil

 belajar tersebut yang dibuktikan melalui pengujian hipotesis dengan

 menggunakan uji-t dengan taraf kepercayaan = 0,05, dimana t hitung > t tabel

 (3,64 > 2,003) yang berarti dalam penelitian ini Ho ditolak sekaligus

Lia Nurul Hidayatillah, "Perbedaan Kemampuan Pemecahan Masalah Matematis Siswa yang Mendapatkan Model Pembelajaran Kooperatif Tipe *Two Stay-Two Stray* dengan yang Mendapatkan Model Pembelajaran *Numbered Head Together*", *Jurnal Pendidikan Matematika STKIP Garut*, Vol.2 No. 3 (September 2013), 155.

⁵⁰ Eyus Sudihartinih, "Meningkatkan Kemampuan Penalaran Matematik Siswa SMA Melalui Pembelajaran Menggunakan Tugas Bentuk Superitem", *Jurnal Univ. Pendidikan Indonesia* (2012), 169.

menerima Ha. Sehingga dapat disimpulkan bahwa terdapat perbedaan secara statistik dimana kelas NHT (1=80,09; SD = 9,55) lebih tinggi hasil belajarnya dari pada kelas yang menggunakan model TSTS (2=72,69; SD = 7,64).

Berdasarkan beberapa penelitian relevan yang sudah dipaparkan, penelitian yang saya lakukan memfokuskan perbedaan antara model pembelajaran numbered head together dengan model pembelajaran two staytwo stray terhadap kemampuan pemecahan masalah dan penalaran matematis siswa. Saya ingin mencari tahu apakah kemampuan pemecahan masalah dan kemampuan penalaran matematis dapat diukur dengan menggunakan kedua model pembelajaran tersebut.

D. Hipotesis Penelitian

Berdasarkan latar belakang, rumusan masalah, dan kerangka berpikir diatas, maka hipotesis dalam penelitian ini adalah:

- Terdapat perbedaan kemampuan pemecahan masalah matematika siswa yang diajar dengan model pembelajaran Numbered Head Together dan model pembelajaran Two Stay-Two Stray.
- 2. Terdapat perbedaan kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* dan model pembelajaran *Two Stay-Two Stray*.

⁵¹ Deanova S. Sitompul, "Perbedaan Belajar Siswa Menggunakan Model Pembelajaran Kooperatif Tipe *Numbered Head Together* dengan *Two Stay-Two Stray* di Kelas ZI IA SMAN 1 Hamparan Perak T.P 2011/2012", *Thesis Universitas Negeri Medan* (2012), 1.

- 3. Terdapat perbedaan kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran Numbered Head Together dan model pembelajaran Two Stay-Two Stray.
- 4. Terdapat interaksi antara model pembelajaran terhadap kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa.

BAB III

METODE PENELITIAN

A. Lokasi dan Waktu Penelitian

Penelitian dilakukan di kelas XI SMA KARTIKA I-2 MEDAN Tahun Pelajaran 2019/2020. Beralamat di Jalan Brigjen H. A. Manaf Lubis Medan Helvetia, Medan. Waktu penelitian yaitu dimulai dari meminta izin serta observasi fisik pada bulan Fevruari, dan memulai penelitiannya pada bulan Maret.

B. Jenis Penelitian

Jenis Penelitian yang digunakan adalah metode *quasi eksperimen*. Metode kuasi eksperimen merupakan salah satu bentuk dari metode eksperimen yang merupakan metode penelitian yang digunakan untuk mencari pengaruh perlakuan tertentu terhadap yang lain dalam kondisi yang terkendalikan.⁵²

Dalam penelitian kuasi eksperimen ini tidak dilakukan randomisasi untuk memasukkan subjek kedalam kelompok eksperimen dan kelompok control, melainkan menggunakan kelompok subjek yang sudah ada/tersedia sebelumnya. Jenis penelitian *Quasi Eksperimen* ini ialah jenis eksperimen semu dimana penelitian menggunakan rancangan yang tidak dapat mengontrol secara penuh terhadap ciri-ciri dan karakteristik sampel yang diteliti, tetapi cenderung menggunakan rancangan yang memungkinkan pada pengontrolan dengan situasi yang ada.

⁵² Ahmad Nizar Rangkuti, (2016), *Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif, PTK dan Penelitian Pengembangan*, Bandung: Citapustaka Media, hal. 75.

C. Populasi dan Sampel

1. Populasi

Populasi menurut Sugiyono merupakan wilayah generalisasi yang terdiri atas objek/subjek yang memiliki kuantitas dan karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari dan kemudian ditarik kesimpulannya.⁵³

Secara singkat populasi diartikan sebagai wilayah generalisasi dari hasil penelitian. Generalisasi tersebut bisa saja dilakukan terhadap objek penelitian dan bisa juga dilakukan terhadap subjek penelitian.⁵⁴

Sehingga populasi dalam penelitian ini adalah seluruh siswa kelas XI SMA KARTIKA I-2 MEDAN pada semester genap tahun pelajaran 2019/2020, yakni:

Tabel 3.1 Jumlah Siswa Kelas XI SMA KARTIKA I-2 Medan

No	Kelas	Jumlah Siswa
1	XI IPA 1	34
2	XI IPA 2	36
3	XI IPA 3	36
4	XI IPA 4	36
5	XI IPS 1	35
6	XI IPS 2	36
7	XI IPS 3	36
	Jumlah Keseluruhan	249

2. Sampel

Sampel adalah bagian dari jumlah dan karakteristik yang dimiliki oleh populasi tersebut. Pengambilan sampel terjadi bila populasi besar dan peneliti tidak mungkin mempelajari semua yang ada pada populasi tersebut. ⁵⁵

 $^{^{53}}$ Sugiyono, (2016), Metode Penelitian Kuantitatif, Kualitatif, dan R&D, Bandung: Alfabeta, hal. 80.

⁵⁴ Indra Jaya dan Ardat, (2013), *Penerapan Statistik Untuk Pendidikan*, Bandung: Citapustaka Media Perintis, hal. 20.

Teknik pengambilan sampel dalam penelitian ini menggunakan teknik sampling daerah atau Cluster Random Sampling, yang mana teknik ini digunakan untuk penentuan sampel apabila obyek yang akan diteliti atau sumber data sangat luas. Teknik pengambilan sampel ini berdasarkan kelompok tertentu bukan pada individu. Maka melalui teknik tersebut, dapat ditentukan kelas yang akan digunakan menjadi sampel, yakni kelas yang akan diajarkan dengan model pembelajaran *Numbered Head Together*, dan kelas yang akan diajarkan dengan model pembelajaran *Two Stay-Two Stray*.

Adapun kelas yang terpilih sebagai sampel dalam penelitian ini yaitu kelas XI IPA 2 dan XI IPA 4. Kelas XI IPA 2 dengan jumlah 36 siswa sebagai kelas eksperimen I yaitu kelas yang diajarkan dengan model pembelajaran *Numbered Head Together* dan kelas XI IPA 4 dengan jumlah 36 siswa sebagai kelas eksperimen II yang diajarkan dengan model pembelajaran *Two Stay-Two Stray*. Jadi jumlah keseluruh sampel dalam penelitian ini adalah 72 siswa.

D. Desain Penelitian

Desain yang digunakan pada penelitian ini ialah desain factorial dengan taraf 2 x 2. Dalam desain ini masing-masing variabel bebas diklasifikasikan menjadi 2 (dua) sisi, yaitu Pembelajaran *Numbered Head Together* (A1) dan Pembelajaran *Two Stay-Two Stray* (A2). Sedangkan variabel terikatnya diklasifikasikan menjadi kemampuan pemecahan masalah (B1) dan kemampuan penalaran matematis (B2).

-

⁵⁵ Indra Jaya dan Ardat, *Ibid.*, hal. 32.

⁵⁶ Sugiyono, *Ibid.*, hal. 83.

Tabel 3.2 Desain Penelitian Anava Dua Jalur dengan Taraf 2 x 2

Pembelajaran Kemampuan	Pembelajaran Numbered Head Together (A ₁)	Pembelajaran Two Stay- Two Stray (A ₂)
Pemecahan Masalah (B ₁)	A_1B_1	A_2B_1
Penalaran Matematis (B ₂)	A_1B_2	A_2B_2

Keterangan:

- 1. A_1B_1 = Kemampuan pemecahan masalah matematika siswa yang diajar dengan pembelajaran model *Numbered Head Together*.
- 2. A_2B_1 = Kemampuan pemecahan masalah matematika siswa yang diajar dengan pembelajaran model *Two Stay-Two Stray*.
- 3. A_1B_2 = Kemampuan penalaran matematis siswa yang diajar dengan pembelajaran model *Numbered Head Together*.
- 4. A_2B_2 = Kemampuan penalaran matematis siswa yang diajar dengan pembelajaran model *Two Stay-Two Stray*.

Penelitian ini melibatkan dua kelas eksperimen yaitu kelas eksperimen I pembelajaran *Numbered Head Together* dan kelas eksperimen II pembelajaran - *Two Stay-Two Stray* yang diberi perlakuan berbeda. Pada kedua kelas diberikan materi yang sama yaitu materi Limit Fungsi Aljabar. Untuk mengetahui kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa diperoleh dari tes yang diberikan pada masing-masing kelompok setelah penerapan dua perlakuan tersebut.

E. Defenisi Operasional

Untuk menghindari perbedaan penafsiran terhadap penggunaan istilah serta pemamparan materi penjelasan pada penelitian ini, maka perlu diberikan defenisi operasional pada penelitian sebagai berikut:

1. Kemampuan Pemecahan Masalah

Kemampuan pemecahan masalah merupakan suatu kemampuan untuk menyelesaikan suatu masalah dalam matematika. Dalam hal ini untuk

menyelesaikan masalah dalam matematika ada beberapa tahapan/langkah, yakni: memahami apa masalahnya, merancang cara menyelesaikannya, melaksanakan rencana, serta menafsirkan hasilnya.

2. Kemampuan Penalaran Matematis

Kemampuan penalaran matematis adalah kemampuan menganalisis, menggeneralisasi, mensintesis/ mengintegrasikan, memberikan alasan yang tepat, dan menyelesaikan masalah yang tidak rutin dalam matematika. Siswa dikatakan mampu melakukan penalaran matematika apabila ia mampu menggunakan penalaran pada pola dan sifat, melakukan manipulasi matematika dalam membuat generalisasi, menyusun bukti, atau menjelaskan gagasan dan pernyataan mamatika.

3. Model Pembelajaran Numbered Head Together

Model Pembelajaran *Numbered Head Together* merupakan suatu model yang mana memberikan kesempatan kepada siswa untuk saling membagi ide-ide dan mempertimbangkan jawaban yang paling tepat. Selain itu model ini juga mendorong siswa untuk meningkatkan semangat kerja sama mereka. Model ini juga dapat digunakan dalam semua mata pelajaran dan semua tipe anak didik. Adapun tahapan/fase dalam model pembelajaran NHT ini yaitu (1) penomoran, (2) pengajuan tugas, (3) berpikir bersama/berdiskusi, (4) pemanggilan nomor dan pemberian tanggapan, (5) membuat kesimpulan.

4. Model Pembelajaran *Two Stay-Two Stray*

Model pembelajaran *Two Stay-Two Stray* adalah model pembelajaran yang terdiri dari empat orang, dimana dua orang siswa tinggal di kelompok dan dua orang siswa bertamu ke kelompok lain. Dua orang yang tinggal bertugas

memberikan informasi kepada tamu tentang hasil kelompoknya, sedangkan yang bertamu bertugas mencatat hasil diskusi kelompok yang dikunjunginya.

F. Instrumen Pengumpulan Data

Sesuai dengan teknik pengumpulan data yang akan digunakan, maka instrument yang digunakan dalam penelitian ini ialah berbentuk tes. Tes merupakan instrument alat ukur untuk mengumpulkan data di mana dalam memberikan respons atas pertanyaan dalam instrument, peserta didorong untuk menunjukkan jawaban maksimalnya. Tes yang digunakan dalam penelitian ini adalah tes untuk kemampuan pemecahan masalah dan penalaran matematis yang berbentuk uraian berjumlah 10 butir soal. Yang mana 5 butir soal merupakan tes kemampuan pemecahan masalah dan 5 butir soal lagi merupakan tes kemampuan penalaran matematis siswa. Soal yang dibuat berdasarkan indikator yang diukur pada masing-masing tes kemampuan pemecahan masalah dan tes kemampuan penalaran matematis matematika yang telah dinilai.

1. Tes kemampuan Pemecahan Masalah Matematis

Tes kemampuan pemecahan masalah matematis berupa soal-soal kontekstual yang berkaitan dengan materi yang dieksperimenkan. Soal tes kemampuan pemecahan masalah matematis ini menggunakan tahapan menurut Polya yang terdiri dari empat kemampuan, yaitu: memahami masalah, merencanakan pemecahan masalah, pemecahan masalah sesuai rencana, serta memeriksa kembali prosedur dan hasil penyelesaian. Soal tes kemampuan pemecahan masalah matematis pada penelitian ini berbentuk uraian, karena dengan tes berbentuk uraian dapat diketahui variasi jawaban siswa.

Penjamin validasi isi (*Content Validity*) dilakukan dengan menyusun kisi-kisi soal pemecahan masalah matematis sebagai berikut:

Tabel 3.3 Kisi-Kisi Tes Kemampuan Pemecahan Masalah

Langkah Pemecahan	Indikator yang Diukur	Bentuk
Masalah Matematika		Soal
Memahami masalah	Menuliskan yang diketahui Menuliskan cukup, kurang, atau berlebihan hal-hal yang diketahui	
Merencanakan pemecahannya	Menuliskan cara yang digunakan dalam pemecahan soal	
Pemecahan masalah sesuai rencana	Melakukan perhitungan, diukur dengan melaksanakan rencana yang sudah dibuat serta membuktikan bahwa langkah yang dipilih benar	Uraian
Memeriksa kembali prosedur dan hasil penyelesaiannya	Melakukan salah satu kegiatan berikut: 1. Memeriksa penyelesaian (mengetes atau menguji coba jawaban). 2. Memeriksa jawaban yang kurang lengkap atau kurang jelas.	

Dari kisi-kisi dan indikator yang telah dibuat untuk menjamin validitas dari sebuah soal maka selanjutnya dibuatlah pedoman penskoran yang sesuai dengan indikator untuk menilai instrument yang telah dibuat. Adapaun rubrik penskorannya, yaitu:

Tabel 3.4 Rubrik Penskoran Tes Kemampuan Pemecahan Masalah

No	Aspek Pemecahan Masalah	Skor	Keterangan
1	Memahami masalah (menuliskan	1	Hanya memaparkan 1 dari 4
	unsur diketahui dan ditanya)	1	komponen dalam menjawab.
		2	Memaparkan 2 dari 4 komponen
		3	dalam menjawab soal.
		5	Memaparkan 3 dari 4 komponen
		3	dalam menjawab soal.
			Memaparkan 4 komponen dalam
		7	menjawab soal yaitu yang
			diketahui, ditanya dan dijawab,

			serta rumus.
2	Menyusun rencana penyelesaian (menuliskan rumus)	1	Tidak menuliskan rumus sama sekali
		3	Menuliskan rumus penyelesaian masalah namun tidak sesuai permintaan soal
		5	Menuliskan setengah rumus penyelesaian sesuai permintaan soal
		7	Menuliskan rumus penyelesaian masalah sesuai permintaan soal
3	Melaksanakan rencana		
	penyelesaian (bentuk penyelesaian)	1	Bentuk penyelesaian singkat, namun salah
		3	Bentuk penyelesaian panjang namun salah
		5	Bentuk penyelesaian singkat benar
		7	Bentuk penyelesaian panjang benar
4	Memeriksa kembali proses dan hasil (menuliskan kembali	1	Tidak ada kesimpulan sama sekali
	kesimpulan jawaban)	3	Menuliskan kesimpulan namun tidak sesuai dengan konteks masalah
		5	Menuliskan kesimpulan namun tidak lengkap dengan konteks masalah
		7	Menuliskan kesimpulan sesuai dengan konteks masalah dengan benar.

2. Tes Kemampuan Penalaran Matematis

Sama halnya dengan soal tes kemampuan pemecahan masalah, untuk soal tes kemampuan penalaran matematis pada penelitian ini juga berbentuk uraian, karena dengan tes berbentuk uraian dapat diketahui variasi jawaban siswa. Penjamin validasi isi (*Content Validity*) dilakukan dengan menyusun kisi-kisi soal pemecahan masalah matematis sebagai berikut:

Tabel 3.5 Kisi-Kisi Tes Kemampuan Penalaran Matematis

Langkah Penalaran Matematis	Indikator yang Diukur	Bentuk Soal
Membuat generalisasi untuk memperkirakan jawaban	Mengidentifikasi soal yang diberikan	
Melakukan manipulasi matematika	Membuat model matematika	
Menggunakan pola dan hubungan	Menyelesaikan permasalahan sesuai dengan yang diminta.	Uraian
Menarik kesimpulan	Menulis kesimpulan yang didapat.	

Adapun pedoman penskoran yang sesuai dengan indikator untuk menilai instrument kemampuan penalaran matematis yang telah dibuat, yaitu:

Tabel 3.6 Rubrik Penskoran Tes Penalaran Matematis

Indikator Penalaran Matematis	7	5	3	1
Membuat generalisasi (model matematika) untuk memperkirakan jawaban	Memaparkan 4 komponen dalam menjawab soal yaitu yang diketahui, ditanya dan dijawab, serta rumus.	Memaparkan 3 dari 4 komponen dalam menjawab soal.	Memaparkan 2 dari 4 komponen dalam menjawab soal.	Hanya memaparkan 1 dari 4 komponen dalam menjawab.
Melakukan manipulasi matematika	Panjang dan benar.	Singkat dan benar.	Panjang dan salah.	Singkat dan salah.
Menarik kesimpulan	Menuliskan kesimpulan sesuai dengan konteks masalah dengan benar.	Menuliskan kesimpulan namun tidak lengkap dengan konteks masalah	Menuliskan kesimpulan namun tidak sesuai dengan konteks masalah	Tidak ada kesimpulan sama sekali

Agar memenuhi kriteria alat evaluasi penilaian yang baik yakni mampu mencerminkan kemampuan yang sebenarnya dari tes yang dievaluasi, maka alat evaluasi tersebut haruslah memiliki kriteria sebagai berikut:

a. Validitas Tes

1. Validitas Isi

Validitas isi digunakan untuk mengukur tingkat kesahihan suatu tes berdasarkan kualitas isinya. Dalam analisis validitas ini dapat ditunjukkan sejauh mana pertanyaan atau butir soal suatu instrument dapat mewakili secara keseluruhan perilaku sampel yang diberi perlakuan tersebut.

Adapun cara analisis validitas isi oleh 2 pakar yaitu dengan rumus Gregory sebagai berikut⁵⁷:

$$V = \frac{D}{A+B+C+D}$$

Berdasarkan tabulasi silang 2 x 2 sebagai berikut:

Tabel 3. 7 Penilaian Rater

		Rat	er I
		1-2	3-4
Rater II	1-2	A	В
Kater II	3-4	С	D

Berikut hasil rekap dengan 2 pakar/ahli:

Tabel 3.8 Rekap Hasil Penilaian

Rater I	Rater II
3	4
3	4
4	4
4	4

⁵⁷ Heri Retnawati, *Analisis Kuantitatif Instrumen Penelitian* (Yogyakarta: Parama Publishing, 2016), hal. 33.

4	4
4	4
3	4
3	4
4	4
4	4
3	4
4	4
4	4

Hasil dari penilaian 2 pakar diatas selanjutnya dimasukkan kedalam tabel tabulasi silang 2 x 2. Yaitu sebagai berikut:

Tabel 3.9 Hasil Tabulasi Silang 2 x 2

Hash Tabulasi Shang 2 x 2				
Rater I	Rater II	Tabulasi		
3	4	D		
3	2	В		
4	4	D		
4	4	D		
4	4	D		
4	4	D		
3	4	D		
3	4	D		
4	4	D		
4	4	D		
3	4	D		
4	4	D		
4	4	D		

Hasil tabulasi silang 2x2 diatas selanjutnya dimasukkan kedalam rumus

Gregory yaitu sebagai berikut:

$$V = \frac{D}{A+B+C+D}$$
$$= \frac{12}{0+1+0+12} = 0.92$$

Selanjutnya hasil tersebut diinterpretasikan. Jika indeks kesepakatan tersebut:

Kurang dari 0,4 maka dikatakan validitasnya rendah.

Diantara 0,4-0,8 maka dikatakan validitasnya sedang.

Lebih dari 0,8 maka dikatakan validitasnya tinggi. 58

Maka berdasarkan koefisien validitas isinya = 0,92, maka dikatakan validitas isinya tinggi.

2. Validitas Butir Soal

Untuk menguji validitas butir soal digunakan rumus *Korelasi Product Moment* dengan angka kasar. ⁵⁹ Perhitungan validitas butir tes

menggunakan rumus *product moment person* adalah sebagai berikut.

$$r_{xy} = \frac{N \sum XY - (\sum X)(\sum Y)}{\sqrt{\{N \sum X^2 - (\sum X)^2\}\{N \sum Y^2 - (\sum Y)^2\}}}$$

Keterangan:

 R_{xy} = Koefisien kolerasi antara skor butir soal (x) dan total skor (y)

N = banyak subjek (siswa)

X = Skor butir soal atau item pertanyaan atau pernyataan

Y = Skor total

Kriteria pengujian validitas adalah setiap item valid apabila $r_{xy} > r_{tabel}$ (r_{tabel} diperoleh dari nilai kritis product moment). Siswa kelas XI selain sampel dijadikan sebagai validator untuk memvalidasi tes yang akan digunakan untuk tes kemampuan pemecahan masalah dan penalaran matematis kelas eksperimen I dan juga kelas eksperimen II.

Setelah dilakukan perhitungan validitas tes dengan rumus product moment, dari 15 butir soal yang terdiri dari soal kemampuan

⁵⁸ Heri Retnawati, *Ibid.*, hal. 33.

⁵⁹ Indra Jaya dan Ardat, *Ibid.*, hal. 147.

pemecahan masalah dan penalaran matematis, diperoleh 10 butir soal yang dinyatakan **valid** dan 5 soal dinyatakan **tidak valid**. Berikut merupakan hasil perhitungan butir soal tes kemampuan pemecahan masalah dan penalaran matematis, yaitu:

Tabel 3.10 Validitas Butir Soal Tes Kemampuan Pemecahan Masalah dan Penalaran Matematis

No	Butir Soal	\mathbf{r}_{xv}	r. , ,	Interpretasi
1	1	0,3893	r _{tabel} 0,3291	Valid
2	2	0,3917	0,3291	Valid
			,	
3	3	0,1646	0,3291	Tidak Valid
4	4	0,5076	0,3291	Valid
5	5	0,1672	0,3291	Tidak Valid
6	6	0,3123	0,3291	Tidak Valid
7	7	0,4477	0,3291	Valid
8	8	0,4321	0,3291	Valid
9	9	0,5043	0,3291	Valid
10	10	0,0663	0,3291	Tidak Valid
11	11	0,3793	0,3291	Valid
12	12	0,2738	0,3291	Tidak Valid
13	13	0,4324	0,3291	Valid
14	14	0,3608	0,3291	Valid
15	15	0,4044	0,3291	Valid

b. Reliabilitas Tes

Suatu alat ukur di sebut memiliki reliabilitas yang tinggi apabila instrumen tersebut memberikan hasil pengukuran yang konsisten.⁶⁰ Untuk menguji reliabilitas tes digunakan rumus sebagai berikut:⁶¹

$$\mathbf{r}_{11} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\Sigma \sigma_t^2}{\sigma_t^2}\right)$$

Keterangan:

r11 = Reliabilitas tes

⁶⁰ Syahrum dan Salim, (2014), *Metodologi Penelitian Kuantitatif, Bandung:* Ciptapustaka Media, hal. 135.

Ciptapustaka Media, hal. 135.

⁶¹ Suharsimi Arikunto, (2013), Dasar-Dasar Evaluasi Pendidikan, Jakarta: PT Bumi Aksara, hal. 115.

 $\Sigma \sigma_t^2 =$ Jumlah varians skor tiap-tiap item

 σ_t^2 = Varians Total

n = Banyak Soal

Tabel 3.11 Kriteria Reliabilitas Suatu Tes

No	Indeks Reliabilitas	Klasifikasi
1	$0.0 \le r_{11} < 0.20$	Sangat Rendah
2	$0,20 \le r_{11} < 0,40$	Rendah
3	$0,40 \le r_{11} < 0,60$	Sedang
4	$0.60 \le r_{11} < 0.80$	Tinggi
5	$0.80 \le r_{11} < 1.00$	Sangat Tinggi

Untuk mencari varians total digunakan rumus sebagai berikut:

$$St^2 = \frac{\Sigma Y^2 - \frac{(\Sigma Y)^2}{N}}{N}$$

Maka reliabilitasnya:

$$r_{11} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\Sigma \sigma_t^2}{\sigma_t^2}\right)$$
$$= \left(\frac{15}{14}\right) \left(1 - \frac{121,32}{228,28}\right)$$
$$= 0.502$$

Jadi, berdasarkan perhitungan diatas, dapat disimpulkan bahwa reliabilitas tes kemampuan pemecahan masalah dan penalaran matematis tersebut merupakan reliabilitas sedang dengan $r_{11}=0,502$.

c. Tingkat Kesukaran

Soal yang baik adalah soal yang tidak terlalu mudah atau tidak terlalu sukar. Untuk mendapatkan indeks kesukaran soal digunakan rumus yaitu:

$$P = \frac{\textit{Mean}}{\textit{Skor maksimum yang ditetapkan}}$$

Tabel 3.12 Indeks Kesukaran Soal

Besar P	Interpretasi
$0.00 \le P < 0.30$	Terlalu Sukar
$0.30 \le P < 0.70$	Cukup (Sedang)
$_{\mathbf{T}}$ 0,70 \leq P \leq 1,00	Terlalu Mudah

Tabel 3.13
Tingkat Kesukaran Tes Kemampuan Pemacahan Masalah dan
Penalaran Matematis

No	Butir Soal	Indeks	Keterangan
1	1	0,4569	Sedang
2	2	0,4639	Sedang
3	3	0,3236	Sedang
4	4	0,4847	Sedang
5	5	0,425	Sedang
6	6	0,4486	Sedang
7	7	0,3361	Sedang
8	8	0,3681	Sedang
9	9	0,3444	Sedang
10	10	0,4319	Sedang
11	11	0,4514	Sedang
12	12	0,3514	Sedang
13	13	0,4181	Sedang
14	14	0,4556	Sedang
15	15	0,4236	Sedang

d. Daya Pembeda Soal

Untuk menentukan daya pembeda, terlebih dahulu skor dari peserta tes diurutkan dari skor tinggi sampai skor terendah. Kemudian diambil 27% skor teratas sebagai kelompok atas 27% skor terbawah sebagai kelompok bawah.

Untuk menghitung daya pembeda soal digunakan rumus yaitu:

$$DP = \frac{(Rata - rata \ kelompok \ atas) - (Rata - rata \ kelompok \ bawah)}{Skor \ maksimum \ soal}$$

Tabel 3.14 Indeks Daya Pembeda

No	Indeks Daya Beda	Klasifikasi
1	0,0 - 0,20	Jelek (poor)
2	0,21 - 0,40	Cukup (satisfactory)

3	0,41 - 0,70	Baik (good)
4	0,71 - 1,00	Baik sekali (excellent)

Tabel 3.15
Daya Pembeda Soal Tes Kemampuan Pemecahan Masalah dan
Penalaran Matematis

	1 Chain man					
No	Butir Soal	Indeks	Keterangan			
1	1	0,115	Jelek			
2	2	0,175	Jelek			
3	3	-0,015	Jelek			
4	4	0,225	Cukup			
5	5	0,015	Jelek			
6	6	0,095	Jelek			
7	7	0,13	Jelek			
8	8	0,045	Jelek			
9	9	0,18	Jelek			
10	10	0,05	Jelek			
11	11	0,045	Jelek			
12	12	0,065	Jelek			
13	13	0,13	Jelek			
14	14	0,185	Jelek			
15	15	0,1	Jelek			

G. Teknik Pengumpulan Data

Teknik yang tepat untuk mengumpulkan data kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa adalah melalui tes. Oleh sebab itu teknik pengumpulan data dalam penelitian ini adalah menggunakan tes untuk kemampuan pemecahan masalah dan tes untuk kemampuan penalaran matematis. Kedua tes tersebut diberikan kepada semua siswa yang dijadikan sampel penelitian.

Semua siswa mengisi atau menjawab sesuai dengan pedoman yang telah ditetapkan peneliti pada awal atau lembar pertama dari tes tersebut untuk pengambilan data. Teknik pengambilan data berupa soal-soal dalam bentuk uraian pada materi Limit Fungsi Aljabar. Adapun teknik pengambilan data adalah sebagai berikut:

- Memberikan post-tes untuk memperoleh data kemampuan pemecahan masalah dan data kemampuan penalaran matematis siswa pada kelas model pembelajaran Numbered Head Together dan kelas pembelajaran Two Stay-Two Stray.
- Melakukan analisis data post-tes yaitu uji normalitas, uji homogenitas pada kelas model pembelajaran *Numbered head Together* dan kelas pembelajaran *Two Stay-Two Stray*.
- Melakukan analisis data post-tes yaitu uji hipotesis dengan menggunakan teknik Analisis Varians

H. Teknik Analisis Data

Untuk melihat tingkat kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa data dianalisis secara deskriptif. Sedangkan untuk melihat perbedaan kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa data dianalisis dengan statistik inferensial yaitu menggunakan teknik analisis varians (ANAVA).

1. Analisis Deskriptif

Data hasil post test kemampuan pemecahan masalah matematika dianalisis secara deskriptif dengan tujuan untuk mendeskripsikan tingkat kemampuan pemecahan masalah matematika siswa setelah pelaksanaan model pembelajaran $Numbered\ Head\ Together$ dan kelas pembelajaran $Two\ Stay-Two\ Stray$. Untuk menentukan standar minimal kemampuan pemecahan masalah berpedoman pada Kriteria Ketuntasan Minimal (KKM) \geq 65. Berdasarkan pandangan tersebut hasil post tes kemampuan pemecahan

masalah matematika siswa pada akhir pelaksanaan pembelajaran dapat disajikan dalam interval kriteria sebagai berikut:⁶²

Tabel 3.16 Interval Kriteria Skor Kemampuan Pemecahan Masalah

No	Interval Nilai	Kategori Penilaian
1	$0 \le \text{SKPM} < 45$	Sangat kurang
2	$45 \le \text{SKPM} < 65$	Kurang
3	$65 \le \text{SKPM} < 75$	Cukup
4	$75 \le \text{SKPM} < 90$	Baik
5	$90 \le \text{SKPM} \le 100$	Sangat baik

Keterangan: SKPM = Skor Kemampuan Pemecahan Masalah

Dengan cara yang sama juga digunakan untuk menentukan kriteria dan menganalisis data tes kemampuan penalaran matematis siswa secara deskriptif pada akhir pelaksanaan pembelajaran, dan disajikan dalam interval kriteria sebagai berikut:⁶³

Tabel 3.17 Interval Kriteria Skor Kemampuan Penalaran Matematis

No	Interval Nilai	Kategori Penilaian
1	$0 \le SKPMa < 45$	Sangat kurang
2	45 ≤ SKPMa < 65	Kurang
3	65 ≤ SKPMa < 75	Cukup
4	75 ≤ SKPMa < 90	Baik
5	$90 \le SKPMa \le 100$	Sangat baik

Keterangan: SKPMa = Skor Kemampuan Penalaran Matematis

Analisis Statistik Inferensial

Setelah data diperoleh kemudian diolah dengan teknik analisis statistik data sebagai berikut:

Menghitung rata-rata skor dengan rumus

$$X = \frac{\sum X}{n}$$

Keterangan:

⁶² Anas Sudijono, (2007), *Pengantar Evaluasi Pendidikan*, Jakarta: Raja Grafindo Persada, hal. 453.

63 Anas Sudijono, *Ibid*,

$$\sum X$$
 = Jumlah Skor

b. Menghitung standar deviasi

Menghitung standar deviasi dari masing-masing kelompok dengan rumus:

$$S_1 = \sqrt{\frac{n_1 \sum x_1^2 - (\sum x_1)^2}{n_1 - (n_1 - 1)}}$$

$$S_2 = \sqrt{\frac{n_2 \sum x_2^2 - (\sum x_2)^2}{n_2 - (n_2 - 1)}}$$

Keterangan:

S1 = standar deviasi kelompok 1 kelas eksperimen I

S2 = standar deviasi kelompok 2 kelas eksperimen II

 $\Sigma X1 = \text{jumlah skor sampel } 1$

 $\Sigma X2 = \text{jumlah skor sampel } 2$

c. Uji Normalitas

Untuk menguji apakah sampel berditribusi normal atau tidak digunakan uji normalitas *liliefors*. Langkah-langkahnya sebagai berikut:⁶⁴

1. Buat H₀ dan H_a

 $H_o: f(x) = normal$

 $H_a: f(x) \neq normal$

2. Hitung rata-rata dan simpangan baku

3. Mengubah $x_i \rightarrow Z_i = \frac{x_I - x}{s} \mid (Z_I = angka \ baku)$

⁶⁴ Indra Jaya dan Ardat, *Ibid.*, hal. 252-253.

- 4. Untuk setiap data dihitung peluangnya dengan menggunakan daftar distribusi normal baku, dihitung $F(Z_I) = P(Z \le Z_I)$; P = Proporsi
- 5. Menghitung proporsi $F(Z_I)$, yaitu:

$$S(Z_{I}) = \frac{Banyaknya Z_{1,Z_{2,...,Z_{n}}}}{n}$$

- 6. Hitung selisih $[F(Z_I) S(Z_I)]$
- 7. Bandingkan L_0 (harga terbesar di antara harga-harga mutlak selisih tersebut) dengan L tabel.

Kriteria pengujian jika $L_0\!\leq\! L$ tabel, H_0 terima dan H_a tolak. Dengan kata lain $L_0\!\leq\! L$ tabel maka data berdistribusi normal.

d. Uji Homogenitas

Uji homogenitas sampel berasal dari sampel yang berdistribusi normal.

Uji homogenitas dalam penelitian ini menggunakan Uji Bartlet. Hipotesis statistik yang diuji dinyatakan sebagai berikut:⁶⁵

$$H_0$$
: $\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2 = \sigma_5^2$

H_i: paling sedikit satu tanda sama dengan tidak berlaku

Formula yang digunakan untuk Uji Bartlet:

$$X^2 = (\ln 10)\{B - \sum (db) \cdot logsi^2\}$$

$$B = (\sum db) \log s^2$$

Keterangan:

$$db = n - 1$$

n = banyaknya subyek setiap kelompok

si² = varians dari setiap kelompok

⁶⁵ Indra Jaya dan Ardat, *Ibid.*, hal. 263

 s^2 = varians gabungan

Dengan ketentuan:

• Tolak H_0 jika X^2 hitung $> X^2$ tabel (tidak homogen)

• Terima H_0 jika X^2 hitung $< X^2$ tabel (homogen)

 \boldsymbol{X}^2 tabel merupakan daftar distribusi chi kuadrat dengan db = k-1 (k =

banyaknya kelompok) dan $\alpha = 0.05$.

e. Uji Hipotesis

Untuk mengetahui perbedaan kemampuan pemecahan masalah dan

kemampuan penalaran matematis antara siswa yang diajar dengan model

pembelajaran Numbered Head Together dan Two Stay-Two Stray pada

materi Limit Fungsi Aljabar dilakukan dengan teknik analisis varians

(ANAVA) pada taraf signifikan $\alpha = 0.05$. Teknik analisis ini digunakan

untuk mengetahui perbedaaan model pembelajaran Numbered Head

Together dan Two Stay-Two Stray terhadap kemampuan pemecahan

masalah dan kemampuan penalaran matematis siswa.

1. Hipotesis Statistik

Hipotesis statistik yang diuji dalam penelitian ini adalah sebagai berikut:

Hipotesis 1:

Ho: $\mu A_1 B_1 = \mu A_2 B_1$

Ha: $\mu A_1 B_1 \neq \mu A_2 B_1$

Hipotesis 2

Ho: $\mu A_1 B_2 = \mu A_2 B_2$

Ha: $\mu A_1 B_2 \neq \mu A_2 B_2$

Hipotesis 3

Ho: $\mu A_1 = \mu A_2$

Ha: $\mu A_1 \neq \mu A_2$

Hipotesis 4

Ho: INT. A X B = 0

Ha: INT. A X B \neq 0

Keterangan:

 μA_1 : Skor rata-rata siswa yang diajar dengan model Numbered Head Together

 μA_2 . Skor rata-rata siswa yang diajar dengan model *Two Stay-Two Stray*

 μB_1 : Skor rata-rata kemampuan pemecahan masalah matematika

 μB_2 : Skor rata-rata kemampuan penalaran matematis

 $\mu A_1 B_1$: Skor rata-rata kemampuan pemecahan masalah matematika siswa yang diajar dengan model *Numbered Head Together*

 $\mu A_1 B_2$: Skor rata-rata kemampuan penalaran matematis siswa yang diajar dengan model *Numbered Head Together*

 $\mu A_2 B_1$: Skor rata-rata kemampuan pemecahan masalah matematika siswa yang diajar dengan model *Two Stay-Two Stray*

μA₂B₂: Skor rata-rata kemampuan penalaran matematis siswa yang diajar dengan model *Two Stay-Two Stray*

BAB IV

HASIL PENELITIAN

A. Deskripsi Data

1. Deskripsi Hasil Penelitian

Hasil Penelitian dari kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa yang diajar dengan menggunakan model pembelajaran Numbered Head Together dan model pembelajaran Two Stay-Two Stray dapat dideskripsikan secara ringkas dalam tabel berikut ini:

Tabel 4.1
Data Kemampuan Pemecahan Masalah dan Kemampuan Penalaran
Matematis Siswa yang Diajar dengan Model Pembelajaran *Numbered Head Together* dan Model Pembelajaran *Two Stay-Two Stray*

Sumber Statistik	J	A1	A2		Jumlah	
	n	36	n	36	NB_1	72
	$\Sigma A_1 B_1 =$	2595	$\Sigma A_2 B_1 =$	3045	$\Sigma \mathbf{B}_1 =$	5640
D.1	Mean =	72.08333333	Mean =	84.58333333	Mean =	78.33333333
B1	St. Dev =	14.54132044	St. Dev =	13.88395785	St. Dev =	28.42527829
	Var =	211.45	Var =	192.7642857	Var =	404.2142857
	$\Sigma(A_1B_1^2)=$	194457	$\Sigma(A_2B_1^2)=$	264303	$\Sigma (B_1^2) =$	458760
	n	36	n	36	NB_2	72
	$\Sigma A_1 B_2 =$	2264	$\Sigma A_2 B_2 =$	2722	$\Sigma \mathbf{B}_2 =$	4986
B2	Mean =	62.88888889	Mean =	75.61111111	Mean =	69.25
D 2	St. Dev =	16.70889887	St. Dev =	14.5823333	St. Dev =	31.29123217
	Var =	279.1873016	Var =	212.6444444	Var =	491.831746
	$\Sigma(A_1B_2^2) =$	152152	$\Sigma(A_2B_2^2)=$	213256	$\Sigma(B_2^2)=$	365408
	NA_1	72	NA_2	72	N Total	144
	$\Sigma A_1 =$	4859	$\Sigma A_2 =$	5767	Σ X Total =	10626
Jumlah	Mean =	67.48611111	Mean =	80.09722222	Mean Total	73.79166667
Juiman	St. Dev =	31.25021931	St. Dev =	28.46629115	St. Dev Total =	59.71651046
	Var =	490.6373016	Var =	405.4087302	Var Total =	896.0460317
	$\Sigma (A_1^2) =$	346609	$\Sigma (A_2^2) =$	477559	$\Sigma(X^2 \text{ Total})=$	824168

Keterangan:

A₁: Kelompok siswa yang diajar dengan menggunakan model pembelajaran

Numbered Head Together (Kelas Eskperimen I)

A₂ : Kelompok siswa yang diajar dengan menggunakan model pembelajaranTwo Stay-Two Stray (Kelas Eksperimen II)

B₁ : Kelompok siswa dengan kemampuan pemecahan masalah

B₂ : Kelompok siswa dengan kempuan penalaran matematis

a. Data Hasil Kemampuan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran *Numbered Head Together* (A1B1)

Berdasarkan data yang diperoleh dari hasil kemampuan pemecahan masalah matematis yang diajar dengan model pembelajaran *Numbered Head Together* dapat diuraikan yaitu: nilai rata-rata hitung yaitu sebesar 72,08; standar deviasi = 14,54; varians = 211,45; nilai maksimum = 93; nilai minimum = 44; dengan rentang nilai (range) = 49. Secara kuantitatif dapat dilihat dengan tabel dibawah ini:

Tabel 4.2
Distribusi Frekuensi Data Kemampuan Pemecahan Masalah
Matematis Siswa yang diajar dengan Model Pembelajaran *Numbered Head Together* (A1B1)

Kelas	Batas Kelas	Interval Kelas	Fo	Fr
1	44,5-52,5	44-52	3	8,33%
2	53,5-61,5	53-61	8	22,22%
3	62,5-70,5	62-70	8	22,22%
4	71,5-79,5	71-79	4	11,11%
5	80,5-88,5	80-88	9	25%
6	89,5-97,5	89-97	4	11,11%
	Jumlah	36	100%	

Dari tabel kemampuan pemecahan masalah matematis dengan model pembelajaran *Numbered Head Together* (A1B1) diatas diperoleh bahwa terdapat perbedaan nilai masing-masing siswa, yakni terdapat siswa yang memiliki nilai tinggi, siswa yang memiliki nilai cukup dan siswa yang memiliki nilai rendah. Jumlah siswa pada interval 44,5-52,5 adalah 3

orang siswa atau 8,33%. Dari 3 siswa tersebut, ketiganya memiliki nilai terendah yakni 44. Jumlah siswa pada interval 53,5-61,5 adalah 8 orang siswa atau 22,22%. Dari 8 siswa tersebut yang mendapati nilai 57 terdapat 5 siswa, yang mendapati nilai 60 terdapat 2 siswa dan yang mendapati nilai 61 terdapat 1 siswa. Jumlah siswa pada interval 62,5-70,5 adalah 8 orang siswa atau 22,22%. Dari 8 siswa tersebut, yang mendapati nilai 69 terdapat 5 siswa dan yang mendapati nilai 70 terdapat 3 siswa. Jumlah siswa pada interval 71,5-79,5 adalah 4 orang siswa atau 11,11%. Dari 4 siswa tersebut, yang mendapati nilai 73 terdapat 2 siswa dan yang mendapati nilai 75 terdapat 2 siswa. Jumlah siswa pada interval 80,5-88,5 adalah 9 orang siswa atau 25%. Yakni terdiri dari 9 siswa yang mendapati nilai 87. Jumlah siswa pada interval 89,5-97,5 adalah 4 orang siswa atau 11,11%. Dari 4 siswa tersebut, diantaranya mendapati nilai 90 terdapat 3 siswa dan mendapati nilai 93 terdapat 1 siswa. Dari tabel diatas dapat diketahui bahwa 5 butir soal pada tes kemampuan pemecahan masalah yang diberikan kepada 36 siswa pada kelas eksperimen I diperoleh nilai siswa yang terbanyak pada interval 80,5-88,5 adalah sebanyak 9 orang siswa atau 25%.

Pada lembar jawaban siswa, terlihat bahwa secara umum siswa telah mampu memahami soal yang diberikan. Berdasarkan teori dalam buku Endang dan Sri yang sudah di paparkan dalam BAB II, terdapat beberapa prinsip yang digunakan dalam mengembaangkan keterampilan pemecahan masalah, yakni mengidentifikasi masalah, menerjemahkan masalah ke dalam bahasa/model matematika, mengerjakan cara

penyelesaiannya serta memeriksa dan menuliskan kembali hasil yang didapat atau membuat kesimpulannya. Dalam hal ini meskipun siswa menjawab soal dengan benar, ada beberapa siswa yang masih mengalami kesulitan dalam mengubah intruksi yang diberikan pada soal ke dalam bahasa/model matematika. Kebanyakan dari siswa hanya sekedar menjawab tanpa mengikuti intruksi arahan dari soal yang diberikan tersebut. Intruksi atau arahan yang diberikan dari tiap-tiap soal terbilang mirip antara soal nomor 1 hingga soal nomor 5, yakni untuk menuliskan unsur-unsur dalam menjawab, seperti diketahui, ditanya, membuat model matematikanya, membuat rumusnya, membuat penyelesaiannya serta menuliskan kembali hasil akhir yang didapat atau kesimpulan. Namun siswa cenderung mempersingkat langkah-langkah penyelesaian soal dan juga masih tidak menuliskan kembali hasil akhir atau kesimpulan jawaban penyelesaian. Siswa sudah dapat dikatakan mampu dalam menjawab benar semua soal, namun belum maksimal dalam mengikuti tiap-tiap intruksi atau arahan dari soal yang diberikan. Sehingga hal inilah yang dapat mengurangi skor dari tiap soal yang mereka kerjakan.

Berdasarkan uraian diatas, penyebab siswa tidak maksimal dalam mengikuti arahan dari tiap-tiap soal yang diberikan yaitu karena siswa tidak terbiasa menuliskannya dan menganggap bahwa dalam proses menyelesaikan soal hasil yang didapat lebih penting dari pada proses pengerjaanya.

Dari penjelasan tersebut, maka dapat disimpulkan bahwa kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* (A1B1) memiliki nilai yang baik. Kategori penilaian data kemampuan pemecahan masalah matematis siswa yang diajar dengan menggunakan model pembelajaran *Numbered Head Together* adalah sebagai berikut:

Tabel 4.3 Kategori Penilaian Kemampuan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran *Numbered Head Together*(A1B1)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le \text{SKPM} < 45$	3	8,33%	Sangat kurang
2	$45 \le SKPM < 65$	8	22,22%	Kurang
3	$65 \le \text{SKPM} < 75$	10	27,78%	Cukup
4	$75 \le \text{SKPM} < 90$	11	30,56%	Baik
5	$90 \le \text{SKPM} \le 100$	4	11,11%	Sangat baik

Dari tabel kategori penilaian kemampuan pemecahan masalah

matematis siswa yang diajar dengan model pembelajaran *numbered head* together diatas, diperoleh bahwa: jumlah siswa yang memperoleh kategori nilai **sangat kurang** adalah sebanyak 3 orang atau sebesar 8,33%, jumlah siswa yang memiliki kategori nilai **kurang** adalah sebanyak 8 orang atau sebesar 22,22%, jumlah siswa yang memiliki kategori nilai **cukup** adalah sebanyak 10 orang atau sebesar 27,78%, jumlah siswa yang memiliki kategori nilai **baik** adalah sebanyak 11 orang atau sebesar 30,56%, jumlah siswa yang memiliki kategori nilai **sangat baik** adalah sebanyak 4 orang atau sebesar 11.11%.

Dengan demikian kemampuan pemecahan masalah matematis siswa yang diajar dengan model *numbered head together* memiliki kategori penilaian yang **baik** karena siswa mampu memperoleh nilai yang terkategori baik dan sangat baik dengan jumlah yang tinggi.

b. Data Hasil Kemampuan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran *Two Stay-Two Stray* (A2B1)

Berdasarkan data yang diperoleh dari hasil kemampuan pemecahan masalah matematis yang diajar dengan model pembelajaran *Two Stay-Two Stray* dapat diuraikan yaitu: nilai rata-rata hitung yaitu sebesar 84,58; standar deviasi = 13,88; varians = 192,76; nilai maksimum = 100; nilai minimum = 58; dengan rentang nilai (range) = 42. Secara kuantitatif dapat dilihat dengan tabel dibawah ini:

Tabel 4.4
Distribusi Frekuensi Data Kemampuan Pemecahan Masalah
Matematis Siswa yang diajar dengan Model Pembelajaran *Two Stay-Two Stray* (A2B1)

Kelas	Batas Kelas	Interval Kelas	Fo	Fr
1	58,5-66,5	58-66	5	13,88%
2	67,5-75,5	67-75	10	27,78%
3	76,5-84,5	76-84	0	0%
4	85,5-93,5	85-93	8	22,22%
5	94,5-102,5	94-102	13	36,11%
	Jumlah	36	100%	

Dari tabel kemampuan pemecahan masalah matematis dengan model pembelajaran *Two Stay-Two Stray* (A2B1) diatas diperoleh bahwa terdapat perbedaan nilai masing-masing siswa, yakni terdapat siswa yang memiliki nilai tinggi, siswa yang memiliki nilai cukup dan siswa yang memiliki nilai rendah. Jumlah siswa pada interval 58,5-66,5 adalah 5 orang siswa atau 13,88%. Dari 5 siswa tersebut yang mendapati nilai 58 terdapat 3 siswa dan yang mendapati nilai 64 terdapat 2 siswa. Jumlah siswa pada interval 67,5-75,5 adalah 10 orang siswa atau 27,78%. Dari 10 siswa tersebut, yang mendapati nilai 73 terdapat 2 siswa dan yang mendapati nilai 75 terdapat 8 siswa. Jumlah siswa pada interval 76,5-84,5 adalah 0 orang siswa atau 0%. Jumlah siswa pada interval 85,5-93,5

adalah 8 orang siswa atau 22,22%. Dari 8 siswa tersebut, yang mendapati nilai 89 terdapat 4 siswa dan yang mendapati nilai 90 terdapat 4 siswa. Jumlah siswa pada interval 94,5-102,5 adalah 13 orang siswa atau 36,11%. Dari 13 siswa tersebut, yang mendapati nilai 95 terdapat 2 siswa, yang mendapati nilai 97 terdapat 3 siswa dan yang mendapati nilai 100 terdapat 8 siswa. Dari tabel diatas dapat diketahui bahwa 5 butir soal pada tes kemampuan pemecahan masalah yang diberikan kepada 36 siswa pada kelas eksperimen I diperoleh nilai siswa yang terbanyak pada interval 94,5-102,5 adalah sebanyak 13 orang siswa atau 36,11%.

Pada lembar jawaban siswa, terlihat bahwa secara umum siswa telah mampu memahami soal yang diberikan. Berdasarkan teori dalam buku Endang dan Sri yang sudah di paparkan dalam BAB II, terdapat beberapa prinsip yang digunakan dalam mengembaangkan keterampilan pemecahan masalah, yakni mengidentifikasi masalah, menerjemahkan masalah ke dalam bahasa/model matematika, mengerjakan cara penyelesaiannya serta memeriksa dan menuliskan kembali hasil yang didapat atau membuat kesimpulannya. Dalam hal ini meskipun siswa menjawab soal dengan benar, ada beberapa siswa yang masih mengalami kesulitan dalam mengubah intruksi yang diberikan pada soal ke dalam bahasa/model matematika. Kebanyakan dari siswa hanya sekedar menjawab tanpa mengikuti intruksi arahan dari soal yang diberikan tersebut. Intruksi atau arahan yang diberikan dari tiap-tiap soal terbilang mirip antara soal nomor 1 hingga soal nomor 5, yakni untuk menuliskan unsur-unsur dalam menjawab, seperti diketahui, ditanya, membuat model

matematikanya, membuat rumusnya, membuat penyelesaiannya serta menuliskan kembali hasil akhir yang didapat atau kesimpulan. Namun siswa cenderung mempersingkat langkah-langkah penyelesaian soal dan juga masih tidak menuliskan kembali hasil akhir atau kesimpulan jawaban penyelesaian. Siswa sudah dapat dikatakan mampu dalam menjawab benar semua soal, namun belum maksimal dalam mengikuti tiap-tiap intruksi atau arahan dari soal yang diberikan. Sehingga hal inilah yang dapat mengurangi skor dari tiap soal yang mereka kerjakan.

Berdasarkan uraian diatas, penyebab siswa tidak maksimal dalam mengikuti arahan dari tiap-tiap soal yang diberikan yaitu karena siswa tidak terbiasa menuliskannya dan menganggap bahwa dalam proses menyelesaikan soal hasil yang didapat lebih penting dari pada proses pengerjaanya.

Dari penjelasan tersebut, maka dapat disimpulkan bahwa kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *Two Stay-Two Stray* (A2B1) memiliki nilai yang sangat baik. Kategori penilaian data kemampuan pemecahan masalah matematis siswa yang diajar dengan menggunakan model pembelajaran *Two Stay-Two Stray* adalah sebagai berikut:

Tabel 4.5
Kategori Penilaian Kemampuan Pemecahan Masalah Matematis
Siswa yang diajar dengan model pembelajaran *Two Stay-Two*Stray(A2B1)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le SKPM < 45$	0	0%	Sangat kurang
2	$45 \le SKPM < 65$	5	13,89%	Kurang
3	$65 \le SKPM < 75$	2	5,56%	Cukup
4	$75 \le \text{SKPM} < 90$	12	33,33%	Baik
5	$90 \le \text{SKPM} \le 100$	17	47,22%	Sangat baik

Dari tabel kategori penilaian kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *two stay-two stray* diatas, diperoleh bahwa: jumlah siswa yang memperoleh kategori nilai **sangat kurang** adalah sebanyak 0 orang atau sebesar 0%, jumlah siswa yang memiliki kategori nilai **kurang** adalah sebanyak 5 orang atau sebesar 13,89%, jumlah siswa yang memiliki kategori nilai **cukup** adalah sebanyak 2 orang atau sebesar 5,56%, jumlah siswa yang memiliki kategori nilai **baik** adalah sebanyak 12 orang atau sebesar 33,22%, jumlah siswa yang memiliki kategori nilai **sangat baik** adalah sebanyak 17 orang atau sebesar 47,22%.

Dengan demikian kemampuan pemecahan masalah matematis siswa yang diajar dengan model *two stay-two stray* memiliki kategori penilaian yang **sangat baik** karena siswa mampu memperoleh nilai yang terkategori sangat baik dengan jumlah yang tinggi.

c. Data Hasil Kemampuan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Numbered Head Together* (A1B2)

Berdasarkan data yang diperoleh dari hasil kemampuan penalaran matematis yang diajar dengan model pembelajaran *Numbered Head Together* dapat diuraikan yaitu: nilai rata-rata hitung yaitu sebesar 62,89; standar deviasi = 16,71; varians = 279,19; nilai maksimum = 93; nilai minimum = 40; dengan rentang nilai (range) = 53. Secara kuantitatif dapat dilihat dengan tabel dibawah ini:

Tabel 4.6
Distribusi Frekuensi Data Kemampuan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Numbered Head Together* (A1B2)

Kelas	Batas Kelas	Interval Kelas	Fo	Fr
1	40,5-48,5	40-48	10	27,78%
2	49,5-57,5	49-57	6	16,67%
3	58,5-66,5	58-66	1	2,78%
4	67,5-75,5	67-75	12	33,33%
5	76,5-84,5	76-84	4	11,11%
6	85,5-93,5	85-93	3	8,33%
	Jumlah	36	100%	

Dari tabel kemampuan penalaran matematis dengan model pembelajaran Numbered Head Together (A1B2) diatas diperoleh bahwa terdapat perbedaan nilai masing-masing siswa, yakni terdapat siswa yang memiliki nilai tinggi, siswa yang memiliki nilai cukup dan siswa yang memiliki nilai rendah. Jumlah siswa pada interval 40,5-48,5 adalah 10 orang siswa atau 27,78%. Dari 10 siswa tersebut, yang mendapati nilai 40 terdapat 3 siswa, yang mendapati nilai 42 terdapat 4 siswa, yang mendapati nilai 45 terdapat 1 siswa, dan yang mendapati nilai 46 terdapat 2 siswa. Jumlah siswa pada interval 49,5-57,5 adalah 6 orang siswa atau 16,67%. Dari 6 siswa tersebut, yang mendapati nilai 49 terdapat 3 siswa dan yang mendapati nilai 57 juga terdapat 3 siswa. Jumlah siswa pada interval 58,5-66,5 adalah 1 orang siswa atau 2,78% yang mendapati nilai 60. Jumlah siswa pada interval 67,5-75,5 adalah 12 orang siswa atau 33,33%. Dari 12 siswa tersebut, yang mendapati nilai 69 terdapat 5 siswa, yang mendapati nilai 73 terdapat 1 siswa dan yang mendapati nilai 75 terdapat 6 siswa. Jumlah siswa pada interval 76,5-84,5 adalah 4 orang siswa atau 11,11% yang terdiri dari 2 siswa yang mendapat nilai 77 dan 2 siswa yang mendapat nilai 80. Jumlah siswa pada interval 85,5-93,5 adalah 3 orang siswa atau 8,33% yang terdiri dari 3 siswa yang mendapati nilai 93.Dari tabel diatas dapat diketahui bahwa 5 butir soal pada tes kemampuan pemecahan masalah yang diberikan kepada 36 siswa pada kelas eksperimen I diperoleh nilai siswa yang terbanyak pada interval 67,5-75,5 adalah sebanyak 12 orang siswa atau 33,33%.

Pada lembar jawaban siswa, terlihat bahwa secara umum siswa telah mampu memahami soal yang diberikan. Dalam hal ini meskipun siswa menjawab soal dengan benar, ada beberapa siswa yang masih mengalami kesulitan dalam mengubah intruksi yang diberikan pada soal ke dalam bahasa/model matematika dan tidak mengikuti prosedur penyelesaian soal sesuai indikator kemampuan penlaran matematis. Kebanyakan dari siswa hanya sekedar menjawab tanpa mengikuti intruksi arahan dari soal yang diberikan tersebut. Intruksi atau arahan yang diberikan dari tiap-tiap soal terbilang mirip antara soal nomor 1 hingga soal nomor 5, yakni untuk menuliskan unsur-unsur dalam menjawab, seperti diketahui, ditanya, membuat model matematikanya, membuat rumusnya, membuat penyelesaiannya serta menuliskan kembali hasil akhir yang didapat atau kesimpulan. Namun kebanyakan siswa cenderung mempersingkat langkah-langkah penyelesaian soal dan juga masih tidak menuliskan kembali hasil akhir atau kesimpulan jawaban penyelesaian baik dari soal nomor 1 hingga soal nomor 5. Siswa sudah dapat dikatakan cukup mampu dalam menjawab semua soal, namun belum maksimal dalam mengikuti tiap-tiap intruksi atau arahan dari soal yang diberikan. Sehingga hal inilah yang dapat mengurangi skor dari tiap soal yang mereka kerjakan.

Berdasarkan uraian diatas, penyebab siswa tidak maksimal dalam mengikuti arahan dari tiap-tiap soal yang diberikan yaitu karena siswa

menganggap bahwa dalam proses menyelesaikan soal hasil yang didapat lebih penting dari pada proses pengerjaanya.

Dari penjelasan tersebut, maka dapat disimpulkan bahwa kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* (A1B2) memiliki nilai yang cukup baik. Kategori penilaian data kemampuan penalaran matematis siswa yang diajar dengan menggunakan model pembelajaran *Numbered Head Together* adalah sebagai berikut:

Tabel 4.7 Kategori Penilaian Kemampuan Penalaran Matematis Siswa yang diajar dengan model pembelajaran *Numbered Head Together* (A1B2)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le SKPM < 45$	7	19,44%	Sangat kurang
2	$45 \le SKPM < 65$	10	27,78%	Kurang
3	$65 \le \text{SKPM} < 75$	6	16,67%	Cukup
4	$75 \le \text{SKPM} < 90$	10	27,78%	Baik
5	$90 \le \text{SKPM} \le 100$	3	8,33%	Sangat baik

Dari tabel kategori penilaian kemampuan penalaran matematis

siswa yang diajar dengan model pembelajaran *numbered head together* diatas, diperoleh bahwa: jumlah siswa yang memperoleh kategori nilai **sangat kurang** adalah sebanyak 7 orang atau sebesar 19,44%, jumlah siswa yang memiliki kategori nilai **kurang** adalah sebanyak 10 orang atau sebesar 27,78%, jumlah siswa yang memiliki kategori nilai **cukup** adalah sebanyak 6 orang atau sebesar 16,67%, jumlah siswa yang memiliki kategori nilai **baik** adalah sebanyak 10 orang atau sebesar 27,78%, jumlah siswa yang memiliki kategori nilai **sangat baik** adalah sebanyak 3 orang atau sebesar 8,33%.

Dengan demikian kemampuan penalaran matematis siswa yang diajar dengan model *numbered head together* memiliki kategori penilaian

yang **baik** karena siswa mampu memperoleh nilai yang terkategori baik dengan jumlah yang tinggi.

d. Data Hasil Kemampuan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Two Stay-Two Stray* (A2B2)

Berdasarkan data yang diperoleh dari hasil kemampuan penalaran matematis yang diajar dengan model pembelajaran *Two Stay-Two Stray* dapat diuraikan yaitu: nilai rata-rata hitung yaitu sebesar 75,61; standar deviasi = 14,58; varians = 212,64; nilai maksimum = 100; nilai minimum = 53; dengan rentang nilai (range) = 47. Secara kuantitatif dapat dilihat dengan tabel dibawah ini:

Tabel 4.8
Distribusi Frekuensi Data Kemampuan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Two Stay-Two Stray* (A2B2)

Kelas	Batas Kelas	Interval Kelas	Fo	Fr
1	53,5-60,5	53-60	7	19,44%
2	61,5-68,5	61-68	7	19,44%
3	69,5-76,5	69-76	4	11,11%
4	77,5-84,5	77-84	6	16,67%
5	85,5-92,5	85-92	7	19,44%
6	93,5-100,5	93-100	5	13,89%
	Jumlah	36	100%	

Dari tabel kemampuan penalaran matematis dengan model

pembelajaran *Two Stay-Two Stray* (A2B2) diatas diperoleh bahwa terdapat perbedaan nilai masing-masing siswa, yakni terdapat siswa yang memiliki nilai tinggi, siswa yang memiliki nilai cukup dan siswa yang memiliki nilai rendah. Jumlah siswa pada interval 53,5-60,5 adalah 7 orang siswa atau 19,44% yang teridiri dari 5 siswa yang mendapat nilai 53 dan 2 siswa yang mendapat nilai 58. Jumlah siswa pada interval 61,5-68,5 adalah 7 orang siswa atau 19,44% yang terdiri dari 3 siswa yang mendapat nilai 65

dan 4 siswa yang mendapat nilai 68. Jumlah siswa pada interval 69,5-76,5

adalah 4 orang siswa atau 11,11% yang terdiri dari 2 siswa yang mendapat nilai 71 dan 2 siswa yang mendapat nilai 75. Jumlah siswa pada interval 77,5-84,5 adalah 6 orang siswa atau 16,67% yang terdiri dari 2 siswa yang mendapat nilai 77 dan 4 siswa yang mendapat nilai 80. Jumlah siswa pada interval 85,5-92,5 adalah 7 orang siswa atau 19,44% yang terdiri dari siswa yang mendapati nilai 89. Jumlah siswa pada interval 93,5-100,5 adalah 5 orang siswa atau 13,89% yang terdiri dari 3 siswa yang mendapat nilai 95 dan 2 siswa yang mendapat nilai 100. Dari tabel diatas dapat diketahui bahwa 5 butir soal pada tes kemampuan pemecahan masalah yang diberikan kepada 36 siswa pada kelas eksperimen I diperoleh nilai siswa yang terbanyak pada interval 53,5-60,5; 61,5-68,5; serta 85,5-92,5 adalah sebanyak 7 orang siswa atau 19,44%.

Pada lembar jawaban siswa, terlihat bahwa secara umum siswa telah mampu memahami soal yang diberikan. Dalam hal ini meskipun siswa menjawab soal dengan benar, ada beberapa siswa yang masih mengalami kesulitan dalam mengubah intruksi yang diberikan pada soal ke dalam bahasa/model matematika dan tidak mengikuti prosedur penyelesaian soal sesuai indikator kemampuan penlaran matematis. Kebanyakan dari siswa hanya sekedar menjawab tanpa mengikuti intruksi arahan dari soal yang diberikan tersebut. Intruksi atau arahan yang diberikan dari tiap-tiap soal terbilang mirip antara soal nomor 1 hingga soal nomor 5, yakni untuk menuliskan unsur-unsur dalam menjawab, seperti diketahui, ditanya, membuat model matematikanya, membuat rumusnya, membuat penyelesaiannya serta menuliskan kembali hasil akhir

yang didapat atau kesimpulan. Namun kebanyakan siswa cenderung mempersingkat langkah-langkah penyelesaian soal dan juga masih tidak menuliskan kembali hasil akhir atau kesimpulan jawaban penyelesaian baik dari soal nomor 1 hingga soal nomor 5. Siswa sudah dapat dikatakan cukup mampu dalam menjawab semua soal, namun belum maksimal dalam mengikuti tiap-tiap intruksi atau arahan dari soal yang diberikan. Sehingga hal inilah yang dapat mengurangi skor dari tiap soal yang mereka kerjakan.

Berdasarkan uraian diatas, penyebab siswa tidak maksimal dalam mengikuti arahan dari tiap-tiap soal yang diberikan yaitu karena siswa menganggap bahwa dalam proses menyelesaikan soal hasil yang didapat lebih penting dari pada proses pengerjaanya.

Dari penjelasan tersebut, maka dapat disimpulkan bahwa kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *Two Stay-Two Stray* (A2B2) memiliki nilai yang cukup baik. Kategori penilaian data kemampuan penalaran matematis siswa yang diajar dengan menggunakan model pembelajaran *Two Stay-Two Stray* adalah sebagai berikut:

Tabel 4.9 Kategori Penilaian Kemampuan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Two Stay-Two Stray* (A2B2)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le \text{SKPM} < 45$	0	0%	Sangat kurang
2	$45 \le SKPM < 65$	7	19,44%	Kurang
3	$65 \le \text{SKPM} < 75$	9	25%	Cukup
4	$75 \le \text{SKPM} < 90$	15	41,67%	Baik
5	$90 \le \text{SKPM} \le 100$	5	13,89%	Sangat baik

Dari tabel kategori penilaian kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *two stay-two stray* diatas,

kurang adalah sebanyak 0 orang atau sebesar 0%, jumlah siswa yang memiliki kategori nilai kurang adalah sebanyak 7 orang atau sebesar 19,44%, jumlah siswa yang memiliki kategori nilai cukup adalah sebanyak 9 orang atau sebesar 25%, jumlah siswa yang memiliki kategori nilai cukup adalah sebanyak 9 orang atau sebesar 25%, jumlah siswa yang memiliki kategori nilai baik adalah sebanyak 15 orang atau sebesar 41,67%, jumlah siswa yang memiliki kategori nilai sangat baik adalah sebanyak 5 orang atau sebesar 8,33%.

Dengan demikian kemampuan penalaran matematis siswa yang diajar dengan model *numbered head together* memiliki kategori penilaian yang **baik** karena siswa mampu memperoleh nilai yang terkategori baik dan sangat baik dengan jumlah yang tinggi.

e. Data Hasil Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Numbered Head Together* (A1)

Berdasarkan data yang diperoleh dari hasil kemampuan pemecahan masalah dan penalaran matematis yang diajar dengan model pembelajaran *Numbered Head Together* (A1) dapat diuraikan yaitu: nilai rata-rata hitung yaitu sebesar 64,33; standar deviasi = 17,45; varians = 304,47; nilai maksimum = 93; nilai minimum = 40; dengan rentang nilai (range) = 53. Secara kuantitatif dapat dilihat dengan tabel dibawah ini:

Tabel 4.10 Distribusi Frekuensi Data Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran Numbered Head Together (A1)

Kelas	Batas Kelas	Interval Kelas	Fo	Fr
1	40,5-48,5	40-48	13	18,06%

2	49,5-57,5	49-57	11	15,28%
3	58,5-66,5	58-66	4	5,56%
4	67,5-75,5	67-75	24	33,33%
5	76,5-84,5	76-84	4	5,56%
6	85,5-93,5	85-93	16	22,22%
Jumlah			72	100%

Dari tabel kemampuan pemecahan masalah dan penalaran matematis dengan model pembelajaran Numbered Head Together (A1) diatas diperoleh bahwa terdapat perbedaan nilai masing-masing siswa, yakni terdapat siswa yang memiliki nilai tinggi, siswa yang memiliki nilai cukup dan siswa yang memiliki nilai rendah. Jumlah siswa pada interval 40,5-48,5 adalah 13 orang siswa atau 18,06% yang terdiri dari 3 siswa yang mendapat nilai 40, 4 siswa yang mendapat nilai 42, 3 siswa yang mendapat nilai 44, 1 siswa yang mendapat nilai 45 dan 2 siswa yang mendapat nilai 46. Jumlah siswa pada interval 49,5-57,5 adalah 11 orang siswa atau 15,28% yang terdiri dari 3 siswa yang mendapat nilai 49 dan 8 siswa yang mendapat nilai 57. Jumlah siswa pada interval 58,5-66,5 adalah 4 orang siswa atau 5,56% yang terdiri dari 3 siswa yang mendapat nilai 60 dan 1 siswa yang mendapat nilai 61. Jumlah siswa pada interval 67,5-75,5 adalah 24 orang siswa atau 33,33% yang terdiri dari 10 siswa yang mendapat nilai 69, 3 siswa yang mendapat nilai 70, 3 siswa yang mendapat nilai 73, dan 8 siswa yang mendapat nilai 75. Jumlah siswa pada interval 76,5-84,5 adalah 4 orang siswa atau 5,56% yang terdiri dari 2 siswa yang mendapat nilai 77 dan 2 siswa yang mendapat nilai 80. Jumlah siswa pada interval 85,5-93,5 adalah 16 orang siswa atau 22,22% yang terdiri dari 9 siswa mendapat nilai 87, 3 siswa mendapat nilai 90, dan 4 siswa mendapat nilai 93. Dari tabel diatas dapat diketahui bahwa 5 butir

soal pada tes kemampuan pemecahan masalah yang diberikan kepada 36 siswa pada kelas eksperimen I diperoleh nilai siswa yang terbanyak pada interval 67,5-75,5 adalah sebanyak 24 orang siswa atau 33,33%.

Dari penjelasan uraian diatas, maka dapat disimpulkan bahwa kemampuan pemecahan masalah dan penalaran matematis yang diajar dengan model pembelajaran *Numbered Head Together* (A1) memiliki nilai yang cukup baik. Kategori penilaian data kemampuan pemecahan masalah dan penalaran matematis yang diajar dengan model pembelajaran *Numbered Head Together* (A1) adalah sebagai berikut:

Tabel 4.11 Kategori Penilaian Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Numbered Head Together* (A1)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le SKPM < 45$	10	13,89%	Sangat kurang
2	$45 \le SKPM < 65$	18	25%	Kurang
3	$65 \le \text{SKPM} < 75$	16	22,22%	Cukup
4	$75 \le \text{SKPM} < 90$	21	29,17%	Baik
5	$90 \le \text{SKPM} \le 100$	7	9,72%	Sangat baik

Dari tabel kategori penilaian kemampuan pemecahan masalah dan

penlaran matematis siswa yang diajar dengan model pembelajaran numbered head togehter diatas, diperoleh bahwa: jumlah siswa yang memperoleh kategori nilai **sangat kurang** adalah sebanyak 10 orang atau sebesar 13,89%, jumlah siswa yang memiliki kategori nilai **kurang** adalah sebanyak 18 orang atau sebesar 25%, jumlah siswa yang memiliki kategori nilai **cukup** adalah sebanyak 16 orang atau sebesar 22,22%, jumlah siswa yang memiliki kategori nilai **baik** adalah sebanyak 21 orang atau sebesar 29,17%, jumlah siswa yang memiliki kategori nilai **sangat baik** adalah sebanyak 7 orang atau sebesar 9,72%.

Dengan demikian kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model *numbered head together* memiliki kategori penilaian yang **baik** karena siswa mampu memperoleh nilai yang terkategori baik dengan jumlah yang tinggi.

f. Data Hasil Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Two Stay-Two Stray* (A2)

Berdasarkan data yang diperoleh dari hasil kemampuan pemecahan masalah dan penalaran matematis yang diajar dengan model pembelajaran *Two Stay-Two Stray* (A2) dapat diuraikan yaitu: nilai rata-rata hitung yaitu sebesar 77; standar deviasi = 14,55; varians = 211,57; nilai maksimum = 100; nilai minimum = 53; dengan rentang nilai (range) = 47. Secara kuantitatif dapat dilihat dengan tabel dibawah ini:

Tabel 4.12
Distribusi Frekuensi Data Kemampuan Pemecahan Masalah dan
Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran
Two Stay-Two Stray (A2)

Kelas	Batas Kelas	Interval Kelas	Fo	Fr
1	53,5-60,5	53-60	10	13,89%
2	61,5-68,5	61-68	9	12,5%
3	69,5-76,5	69-76	14	19,44%
4	77,5-84,5	77-84	6	8,33%
5	85,5-92,5	85-92	15	20,83%
6	93,5-100,5	93-100	18	25%
	Jumlah	72	100%	

Dari tabel kemampuan pemecahan masalah dan penalaran matematis dengan model pembelajaran *Two Stay-Two Stray* (A2) diatas diperoleh bahwa terdapat perbedaan nilai masing-masing siswa, yakni terdapat siswa yang memiliki nilai tinggi, siswa yang memiliki nilai cukup dan siswa yang memiliki nilai rendah. Jumlah siswa pada interval 53,5-60,5 adalah 10 orang siswa atau 13,89% yang terdiri dari 5 siswa yang

mendapat nilai 53 dan 5 siswa yang mendapat nilai 58. Jumlah siswa pada interval 61,5-68,5 adalah 9 orang siswa atau 12,5% yang terdiri dari 2 siswa yang mendapat nilai 64, 3 siswa yang mendapat nilai 65 dan 4 siswa yang mendapat nilai 68. Jumlah siswa pada interval 69,5-76,5 adalah 14 orang siswa atau 19,44% yang terdiri dari 2 siswa yang mendapat nilai 71, 2 siswa yang mednapat nilai 73 dan 10 siswa yang mendapat nilai 75. Jumlah siswa pada interval 77,5-84,5 adalah 6 orang siswa atau 8,33% yang terdiri dari 2 siswa yang mendapat nilai 77 dan 4 siswa yang mendapat nilai 80. Jumlah siswa pada interval 85,5-92,5 adalah 15 orang siswa atau 20,83% yang terdiri dari 11 siswa yang mendapati nilai 89 dan 4 siswa yang mendapati nilai 80. Jumlah siswa pada interval 93,5-100,5 adalah 18 orang siswa atau 25% yang terdiri dari 5 siswa yang mendapati nilai 95, 3 siswa yang mendapati nilai 97, dan 10 siswa yang mendapati nilai 100. Dari tabel diatas dapat diketahui bahwa 5 butir soal pada tes kemampuan pemecahan masalah yang diberikan kepada 36 siswa pada kelas eksperimen I diperoleh nilai siswa yang terbanyak pada interval 93,5-100,5 adalah sebanyak 7 orang siswa atau 25%.

Dari penjelasan uraian diatas, maka dapat disimpulkan bahwa kemampuan pemecahan masalah dan penalaran matematis yang diajar dengan model pembelajaran *Two Stay-Two Stray* (A2) memiliki nilai yang sangat baik. Kategori penilaian data kemampuan pemecahan masalah dan penalaran matematis yang diajar dengan model pembelajaran *Two Stay-Two Stray* (A2) adalah sebagai berikut:

Tabel 4.13

Kategori Penilaian Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Two Stay-Two Stray* (A2)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le SKPM < 45$	0	0%	Sangat kurang
2	$45 \le \text{SKPM} < 65$	12	16,67%	Kurang
3	$65 \le \text{SKPM} < 75$	11	15,28%	Cukup
4	$75 \le \text{SKPM} < 90$	27	37,5%	Baik
5	$90 \le \text{SKPM} \le 100$	22	30,56%	Sangat baik

Dari tabel kategori penilaian kemampuan pemecahan masalah dan

penlaran matematis siswa yang diajar dengan model pembelajaran *two* stay-two stray diatas, diperoleh bahwa: jumlah siswa yang memperoleh kategori nilai **sangat kurang** adalah sebanyak 0 orang atau sebesar 0%, jumlah siswa yang memiliki kategori nilai **kurang** adalah sebanyak 12 orang atau sebesar 16,67%, jumlah siswa yang memiliki kategori nilai **cukup** adalah sebanyak 11 orang atau sebesar 15,28%, jumlah siswa yang memiliki kategori nilai **baik** adalah sebanyak 27 orang atau sebesar 37,5%, jumlah siswa yang memiliki kategori nilai **sangat baik** adalah sebanyak 22 orang atau sebesar 30,56%.

Dengan demikian kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model *two stay-two stray* memiliki kategori penilaian yang **baik** karena siswa mampu memperoleh nilai yang terkategori baik dan sangat baik dengan jumlah yang tinggi.

g. Data Hasil Kemampuan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* (B1)

Berdasarkan data yang diperoleh dari hasil kemampuan pemecahan masalah matematis yang diajar dengan model pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* dapat diuraikan yaitu: nilai rata-

rata hitung yaitu sebesar 75,41; standar deviasi = 16,91; varians = 286,01; nilai maksimum = 100; nilai minimum = 44; dengan rentang nilai (range) = 56. Secara kuantitatif dapat dilihat dengan tabel dibawah ini:

Tabel 4.14
Distribusi Frekuensi Data Kemampuan Pemecahan Masalah
Matematis Siswa yang diajar dengan Model Pembelajaran Numbered
Head Together dan Two Stay-Two Stray (B1)

Kelas	Batas Kelas	Interval Kelas	Fo	Fr
1	44,5-52,5	44-52	3	4,17%
2	53,5-61,5	53-61	11	15,28%
3	62,5-70,5	62-70	10	13,89%
4	71,5-79,5	71-79	14	19,44%
5	80,5-88,5	80-88	9	12,5%
6	89,5-97,5	89-97	17	23,61%
7	98,5-106,5	98-106	8	11,11
	Jumlah			100%

Dari tabel kemampuan pemecahan masalah matematis dengan model pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray*(B1) diatas diperoleh bahwa terdapat perbedaan nilai masing-masing siswa, yakni terdapat siswa yang memiliki nilai tinggi, siswa yang memiliki nilai cukup dan siswa yang memiliki nilai rendah. Jumlah siswa pada interval 44,5-52,5 adalah 3 orang siswa atau 4,17% yang terdiri dari siswa yang mendapat nilai 44. Jumlah siswa pada interval 53,5-61,5 adalah 11 orang siswa atau 15,28% yang terdiri dari 5 siswa yang mendapat nilai 57, 3 siswa yang mendapat nilai 58, 2 siswa yang mendapat nilai 60 dan 1 siswa yang mendapat nilai 61. Jumlah siswa pada interval 62,5-70,5 adalah 10 orang siswa atau 13,89% yang terdiri dari 2 siswa yang mendapat nilai 64, 4 siswa yang mendapat nilai 69, dan 3 siswa yang mendapat nilai 70. Jumlah siswa pada interval 71,5-79,5 adalah 14 orang siswa atau 19,44% yang terdiri dari 4 siswa yang mendapat nilai 73 dan 10 siswa yang mendapat nilai 75. Jumlah siswa

pada interval 80,5-88,5 adalah 9 orang siswa atau 12,5% yang terdiri dari siswa yang mendapat nilai 87. Jumlah siswa pada interval 89,5-97,5 adalah 17 orang siswa atau 23,61% yang terdiri dari 4 siswa yang mendapat nilai 89, 7 siswa yang mendapat nilai 90, 1 siswa yang mendapat nilai 93, 2 siswa yang mendapat nilai 95 dan 3 siswa yang mendapat nilai 97. Jumlah siswa pada interval 98,5-106,5 adalah 8 orang siswa atau 11,11% yang terdiri dari siswa yang mendapat nilai 100. Dari tabel diatas dapat diketahui bahwa 5 butir soal pada tes kemampuan pemecahan masalah yang diberikan kepada 36 siswa pada kelas eksperimen I diperoleh nilai siswa yang terbanyak pada interval 89,5-97,5 adalah sebanyak 17 orang siswa atau 23,61%.

Dari penjelasan uraian diatas, maka dapat disimpulkan bahwa kemampuan pemecahan masalah matematis yang diajar dengan model pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* (B1) memiliki nilai yang sangat baik. Kategori penilaian data kemampuan pemecahan masalah matematis yang diajar dengan model pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* (B1) adalah sebagai berikut:

Tabel 4.15
Kategori Penilaian Kemampuan Pemecahan Masalah Matematis
Siswa yang diajar dengan Model Pembelajaran Numbered Head
Together dan Two Stav-Two Strav (B1)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le SKPM < 45$	3	4,17%	Sangat kurang
2	$45 \le SKPM < 65$	13	18,06%	Kurang
3	$65 \le SKPM < 75$	12	16,67%	Cukup
4	$75 \le \text{SKPM} < 90$	23	31,94%	Baik
5	$90 \le \text{SKPM} \le 100$	21	29,17%	Sangat baik

Dari tabel kategori penilaian kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *numbered head together* dan *two stay-two stray* diatas, diperoleh bahwa: jumlah siswa yang memperoleh kategori nilai **sangat kurang** adalah sebanyak 3 orang atau sebesar 4,17%, jumlah siswa yang memiliki kategori nilai **kurang** adalah sebanyak 13 orang atau sebesar 18,06%, jumlah siswa yang memiliki kategori nilai **cukup** adalah sebanyak 12 orang atau sebesar 16,67%, jumlah siswa yang memiliki kategori nilai **baik** adalah sebanyak 23 orang atau sebesar 31,94%, jumlah siswa yang memiliki kategori nilai **sangat baik** adalah sebanyak 21 orang atau sebesar 29,17%.

Dengan demikian kemampuan pemecahan masalah matematis siswa yang diajar dengan model *numbered head together* dan *two stay-two stray* memiliki kategori penilaian yang **baik** karena siswa mampu memperoleh nilai yang terkategori baik dan sangat baik dengan jumlah yang tinggi.

h. Data Hasil Kemampuan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* (B2)

Berdasarkan data yang diperoleh dari hasil kemampuan penalaran matematis yang diajar dengan model pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* (B2) dapat diuraikan yaitu: nilai ratarata hitung yaitu sebesar 66,9; standar deviasi = 17,96; varians = 322,79; nilai maksimum = 100; nilai minimum = 40; dengan rentang nilai (range) = 60. Secara kuantitatif dapat dilihat dengan tabel dibawah ini:

Tabel 4.16
Distribusi Frekuensi Data Kemampuan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran Numbered Head Together dan Two Stay-Two Stray (B2)

Kelas	Batas Kelas	Interval Kelas	Fo	Fr
1	40,5-48,5	40-48	10	13,89%
2	49,5-57,5	49-57	11	15,28%
3	58,5-66,5	58-66	6	8,33%
4	67,5-75,5	67-75	20	27,78%
5	76,5-84,5	76-84	10	13,89%
6	85,5-93,5	85-93	10	13,89%
7	94,5-102,5	94-102	5	6,94%
	Jumlah	72	100%	

Dari tabel kemampuan penalaran matematis dengan model pembelajaran Numbered Head Together dan Two Stay-Two Stray (B2) diatas diperoleh bahwa terdapat perbedaan nilai masing-masing siswa, yakni terdapat siswa yang memiliki nilai tinggi, siswa yang memiliki nilai cukup dan siswa yang memiliki nilai rendah. Jumlah siswa pada interval 40,5-48,5 adalah 10 orang siswa atau 13,89% yang terdiri dari 3 siswa yang mendapat nilai 40, 4 siswa yang mendapat nilai 42, 1 siswa yang mendapat nilai 45 dan 2 siswa yang mendapat nilai 46. Jumlah siswa pada interval 49,5-57,5 adalah 11 orang siswa atau 15,28% yang terdiri dari 3 siswa yang mendapat nilai 49, 5 siswa yang mendapat nilai 53 dan 3 siswa yang mendapat nilai 57. Jumlah siswa pada interval 58,5-66,5 adalah 6 orang siswa atau 8,33% yang terdiri dari 2 siswa yang mendapat nilai 58, 1 siswa yang mendapat nilai 60 dan 3 siswa yang mendapat nilai 65. Jumlah siswa pada interval 67,5-75,5 adalah 20 orang siswa atau 27,78% yang terdiri dari 4 siswa yang mendapat nilai 68, 5 siswa yang mendapat nilai 69, 2 siswa yang mendapat nilai 71, 1 siswa yang mendapat nilai 73 dan 8 siswa yang mendapat nilai 75. Jumlah siswa pada interval 76,5-84,5 adalah 10 orang siswa atau 13,89% yang terdiri dari 4 siswa yang

mendapat nilai 77 dan 6 siswa yang mendapat nilai 80. Jumlah siswa pada interval 85,5-93,5 adalah 10 orang siswa atau 13,89% yang terdiri dari 7 siswa yang mendapat nilai 89 dan 3 siswa yang mendapat nilai 93. Jumlah siswa pada interval 94,5-102,5 adalah 5 orang siswa atau 6,94% yang terdiri dari 3 siswa yang mendapat nilai 95 dan 2 siswa yang mendapat nilai 100. Dari tabel diatas dapat diketahui bahwa 5 butir soal pada tes kemampuan pemecahan masalah yang diberikan kepada 36 siswa pada kelas eksperimen I diperoleh nilai siswa yang terbanyak pada interval 67,5-75,5 adalah sebanyak 20 orang siswa atau 27,78%.

Dari penjelasan uraian diatas, maka dapat disimpulkan bahwa kemampuan penalaran matematis yang diajar dengan model pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* (B2) memiliki nilai yang cukup baik. Kategori penilaian data kemampuan penalaran matematis yang diajar dengan model pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* (B2) adalah sebagai berikut:

Tabel 4.17
Kategori Penilaian Kemampuan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran Numbered Head Together dan Two Stay-Two Stray (B2)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le SKPM < 45$	7	9,72%	Sangat kurang
2	$45 \le SKPM < 65$	17	23,61%	Kurang
3	$65 \le \text{SKPM} < 75$	15	20,83%	Cukup
4	$75 \le \text{SKPM} < 90$	25	34,72%	Baik
5	$90 \le \text{SKPM} \le 100$	8	11,11%	Sangat baik

Dari tabel kategori penilaian kemampuan penalaran matematis

siswa yang diajar dengan model pembelajaran *numbered head together* dan *two stay-two stray* diatas, diperoleh bahwa: jumlah siswa yang memperoleh kategori nilai **sangat kurang** adalah sebanyak 7 orang atau

sebesar 9,72%, jumlah siswa yang memiliki kategori nilai **kurang** adalah sebanyak 17 orang atau sebesar 23,61%, jumlah siswa yang memiliki kategori nilai **cukup** adalah sebanyak 15 orang atau sebesar 20,83%, jumlah siswa yang memiliki kategori nilai **baik** adalah sebanyak 25 orang atau sebesar 34,72%, jumlah siswa yang memiliki kategori nilai **sangat baik** adalah sebanyak 8 orang atau sebesar 11,11%.

Dengan demikian kemampuan penalaran matematis siswa yang diajar dengan model *numbered head together* dan *two stay-two stray* memiliki kategori penilaian yang **baik** karena siswa mampu memperoleh nilai yang terkategori baik dan sangat baik dengan jumlah yang tinggi.

B. Uji Persyaratan Analisis

Sebelum dilakukannya uji hipotesis analisis varians (ANAVA) terhadap hasil tes kemampuan akhir siswa, perlu dilakukan terlebih dahulu uji persyaratan data, yaitu meliputi: (1) data harus bersumber dari sampel yang dipilih secara acak, (2) sampel berasal dari populasi yang berdistribusi normal, serta (3) kelompok data mempunyai variansi yang homogen. Berikut merupakan uji persyaratan analisis normalitas dan homogenitas dari distribusi data yang diperoleh.

1. Uji Normalitas

Salah satu teknik dalam uji normalitas ialah teknik analisis *Liliefors*, yang merupakan teknik analisis uji persyaratan yang dilakukan sebelum uji hipotesis. Berdasarkan sampel acak maka diuji hipotesis nol bahwa sampel berasal dari populasi berdistribusi normal dan hipotesis tandingan bahwa populasi berdistribusi tidak normal. Dengan ketentuan jika L hitung < L tabel maka sebaran data tersebut berdistribusi normal.

Namun jika L hitung > L tabel maka sebaran data tidak berdistribusi normal. Berikut merupakan hasil analisis normalitas untuk masing-masing sub kelompok:

a. Tingkat Kemampuan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran *Numbered Head Together* (A1B1)

Berdasarkan hasil perhitungan uji normalitas yang dilakukan pada sampel hasil kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* (A1B1), diperoleh nilai L hitung = 0,07379 dengan nilai L tabel = 0,14767. Dikarenakan nilai L hitung < L tabel yakni 0,07379 < 0,14767, maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa: sampel pada hasil kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* berasal dari populasi yang **berdistribusi normal.**

b. Tingkat Kemampuan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran *Two Stay-Two Stray* (A2B1)

Berdasarkan hasil perhitungan uji normalitas yang dilakukan pada sampel hasil kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *Two Stay-Two Stray* (A2B1), diperoleh nilai L hitung = 0,14125 dengan nilai L tabel = 0,14767. Dikarenakan nilai L hitung < L tabel yakni 0,14125 < 0, 14767, maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa: sampel pada hasil kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *Two Stay-Two Stray* berasal dari populasi yang **berdistribusi normal.**

c. Tingkat Kemampuan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Numbered Head Together* (A1B2)

Berdasarkan hasil perhitungan uji normalitas yang dilakukan pada sampel hasil kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* (A1B2), diperoleh nilai L hitung = 0,13863 dengan nilai L tabel = 0,14767. Dikarenakan nilai L hitung < L tabel yakni 0,13863 < 0, 14767, maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa: sampel pada hasil kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* berasal dari populasi yang **berdistribusi normal.**

d. Tingkat Kemampuan Penelaran Matematis Siswa yang diajar dengan Model Pembelajaran Two Stay-Two Stray (A2B2)

Berdasarkan hasil perhitungan uji normalitas yang dilakukan pada sampel hasil kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *Two Stay-Two Stray* (A2B2), diperoleh nilai L hitung = 0,08403 dengan nilai L tabel = 0,14767. Dikarenakan nilai L hitung < L tabel yakni 0,08403 < 0, 14767, maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa: sampel pada hasil kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* berasal dari populasi yang **berdistribusi normal.**

e. Tingkat Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran Numbered Head Together (A1)

Berdasarkan hasil perhitungan uji normalitas yang dilakukan pada sampel hasil kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* (A1), diperoleh nilai L hitung = 0,07918 dengan nilai L tabel = 0,10442. Dikarenakan nilai L hitung < L tabel yakni 0,07918 < 0, 10442, maka dapat disimpulkan

hipotesis nol diterima. Sehingga dapat dikatakan bahwa: sampel pada hasil kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* berasal dari populasi yang **berdistribusi normal**

f. Tingkat Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran Two Stay-Two Stray (A2)

Berdasarkan hasil perhitungan uji normalitas yang dilakukan pada sampel hasil kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model pembelajaran *Two Stay-Two Stray* (A2), diperoleh nilai L hitung = 0,10087 dengan nilai L tabel = 0,10442. Dikarenakan nilai L hitung < L tabel yakni 0,10087 < 0, 10442, maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa: sampel pada hasil kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model pembelajaran *Two Stay-Two Stray* berasal dari populasi yang **berdistribusi normal.**

g. Tingkat Kemampuan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran Numbered Head Together dan Two Stay-Two Stray (B1)

Berdasarkan hasil perhitungan uji normalitas yang dilakukan pada sampel hasil kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* (B1), diperoleh nilai L hitung = 0,10062 dengan nilai L tabel = 0,10442. Dikarenakan nilai L hitung < L tabel yakni 0,10062 < 0, 10442, maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa: sampel pada hasil kemampuan pemecahan masalah matematis siswa yang diajar dengan

model pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* berasal dari populasi yang **berdistribusi normal.**

h. Tingkat Kemampuan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran Numbered Head Together dan Two Stay-Two Stray (B2)

Berdasarkan hasil perhitungan uji normalitas yang dilakukan pada sampel hasil kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* (B2), diperoleh nilai L hitung = 0,09375 dengan nilai L tabel = 0,10442. Dikarenakan nilai L hitung < L tabel yakni 0,09375 < 0, 10442, maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa: sampel pada hasil kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray* berasal dari populasi yang berdistribusi normal.

Maka dari itu, kesimpulan dari seluruh pengujian normalitas sub kelompok data ialah bahwa semua sampel berasal dari populasi yang berdistribusi normal. Berikut rangkuman hasil analisis normalitas masing-masing kelompok dapat dilihat pada tabel dibawah ini:

Tabel 4.18 Rangkuman Hasil Uji Normalitas Sub Kelompok

Kelompok	L Hitung	L Tabel	Kesimpulan	
A1B1	0,07379			
A1B2	0,13863	0,14767	Normal	
A2B1	0,14125	0,14707	Normai	
A2B2	0,08403			
A1	0,07918			
A2	0,10087	0,10442	Normal	
B 1	0,10062	0,10442	ivormai	
B2	0,09375			

2. Uji Homogenitas

Pengujian homogenitas varians populasi yang berdistribusi normal dilakukan dengan uji *Bartlett*. Dari hasil perhitungan X^2 hitung (chi kuadrat) diperoleh nilai lebih kecil dibandingkan harga pada X^2 tabel.

Dengan ketentuan jika X^2 hitung $< X^2$ tabel maka dapat dikatakan bahwa responden yang dijadikan sampel penelitian tidak berbeda atau menyerupai karakteristik dari populasinya atau biasa disebut homogen. Jika X^2 hitung $> X^2$ tabel maka dapat dikatan bahwa responden yang dijadikan sampel penelitian berbeda karakteristik dari populasinya atau tidak homogen.

Uji homogenitas dilakukan pada masing-masing sub-kelompok sampel yaitu: $(A_1B_1,\ A_2B_1,\ A_1B_2,\ A_2B_2),\ (A_1,\ A_2),\ (B_1,\ B_2).$ Berikut rangkuman hasil analisis homogenitas, yaitu:

 $Tabel \ 4.19$ Rangkuman Hasil Uji Homogenitas untuk Kelompok Sampel (A_1B_1) , (A_2B_1) , (A_1B_2) , (A_2B_2) , (A_1) , (A_2) , (B_1) , (B_2)

Kelompok	db	Si ²	db.Si ²	db.logSi ²	X _{hitung}	X _{tabel}	Keputusan
A1B1	35	227,16	7950,7	2,356			
A2B1	35	232,5	8137,5	2,366	0,8744	7,815	HOMOGEN
A1B2	35	289,67	10138	2,462	0,0744	7,015	HOMOGEN
A2B2	35	218,47	7646,5	2,339			
A1	71	304,47	21617	2,484	2,3391	3,841	HOMOGEN
A2	71	211,57	15022	2,325	2,3391	3,041	HOMOGEN
B1	71	286,01	20307	2,456	0.2507	3,841	HOMOGEN
B2	71	322,79	22918	2,509	0,2597	3,841	HUMUGEN

Berdasarkan hasil analisis uji homogenitas tersebut dapat disimpulkan bahwa kelompok sampel berasal dari populasi yang mempunyai varians homogen.

C. Hasil Analisis Data/Pengujian Hipotesis

1. Analisis Varians

Analisis yang digunakan dalam pengujian keempat hipotesis yang diajukan dalam penelitian ini adalah analisis varians dua jalur. Berikut hasil analisis data berdasarkan ANAVA 2 x 2, yaitu:

Tabel 4.20 Hasil ANAVA dari Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Numbered Head Together* dan *Two Stay-Two Stray*

Sumber Varians	dk	JK	RJK	$\mathbf{F}_{ ext{hitung}}$	$\mathbf{F}_{ ext{tabel}}$
Antar Kolom (A)	1	5725,45	5725,45	25,56	
Antar Baris (B)	1	2970,25	2970,25	13,26	3,91
Interaksi (A x B)	1	0,43555	0,43555	0,002	
Antar Kelompok A dan B	3	8696,13	2898,71	12,94	2,67
Dalam Kelompok	140	31361,62	224,012		
Total	143	40057,75			

Kriteria Pengujian:

- a. Karena F hitung (A) = 25,56 > 3,91, maka terdapat perbedaan yang signifikan antar kolom. Ini menunjukkan bahwa terjadi perbedaan kemampuan siswa yang diajar menggunakan model pembelajaran *Numbered Head Together* dan model pembelajaran *Two Stay-Two Stray*.
- b. Karena F hitung (B) = 13,26 > 3,91, maka terdapat perbedaan yang signifikan antar baris. Ini menunjukkan bahwa terdapat kemampuan pemecahan masalah dan kemampuan penelaran matematis siswa.
- c. Karena F hitung Interaksi = 0,002, maka tidak terdapat interaksi antara faktor kolom dan faktor baris. Ini menunjukkan a=bahwa tidak terdapat interaksi antara model pembelajaran dengan kemampuan matematis siswa.

Setelah dilakukan analisis varians melalui uji F, maka masing-masing hipotesis yang diajukan dalam penelitian ini serta pembahasannya dapat dijabarkan sebagai berikut:

a. Hipotesis Pertama

Hipotesis Penelitian: Terdapat perbedaan kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran Numbered Head Together dengan model pembelajaran Two Stay-Two Stray.

Hipotesis Statistik:

Ho: $\mu A_1 B_1 = \mu A_2 B_1$

Ha: $\mu A_1 B_1 \neq \mu A_2 B_1$

Terima Ho jika : $F_{hitung} < F_{tabel}$

Akan dilakukan uji ANAVA satu jalur untuk mengetahui perbedaan antara A1 dan A2 yang terjadi pada B1. Rangkuman analisis dapat dilihat pada tabel berikut:

Sumber Varians	dk	JK	RJK	$\mathbf{F}_{ ext{hitung}}$	\mathbf{F}_{tabel}
Antar Kelompok (A)	1	2812,5	2812,5		
Dalam Kelompok	70	14147,5	199,261	14,1147	3,98
Total	71				

Berdasarkan hasil analisis uji F, didapat nilai $F_{hitung}=14,1147$ dan nilai pada F_{tabel} pada taraf $\alpha(0,05)=3,98$. Maka dari itu, dengan membandingkai nilai F_{hitung} dan F_{tabel} untuk menentukan kriteria penerimaan dan penolakan Ho, didapat bahwa nilai $F_{hitung}>F_{tabel}$. Hal ini berarti menolak Ho dan menerima Ha.

Dari hasil pembuktian analisis hipotesis pertama, hal ini meyimpulkan bahwa **terdapat perbedaan** kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together*

dengan model pembelajaran *Two Stay-Two Stray* pada materi Limit Fungsi Aljabar.

b. Hipotesis Kedua

Hipotesis Penelitian: Terdapat perbedaan kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* dengan model pembelajaran *Two Stay-Two Stray*.

Hipotesis Statistik:

Ho: $\mu A_1 B_2 = \mu A_2 B_2$

Ha: $\mu A_1 B_2 \neq \mu A_2 B_2$

 $Terima\ Ho\ jika: F_{hitung} < F_{tabel}$

Akan dilakukan uji ANAVA satu jalur untuk mengetahui perbedaan antara A1 dan A2 yang terjadi pada B2. Rangkuman analisis dapat dilihat pada tabel berikut:

Tabel 4.22 Perbedaan A₁ dan A₂ pada B₂

Sumber Varians	dk	JK	RJK	$\mathbf{F}_{ ext{hitung}}$	\mathbf{F}_{tabel}
Antar Kelompok (A)	1	2913,39	2913,39		
Dalam Kelompok	70	17214,1	242,452	12,0163	3,98
Total	71				

Berdasarkan hasil analisis uji F, didapat nilai $F_{hitung}=12,0163$ dan nilai pada F_{tabel} pada taraf $\alpha(0,05)=3,98$. Maka dari itu, dengan membandingkai nilai F_{hitung} dan F_{tabel} untuk menentukan kriteria penerimaan dan penolakan Ho, didapat bahwa nilai $F_{hitung}>F_{tabel}$. Hal ini berarti menolak Ho dan menerima Ha.

Dari hasil pembuktian analisis hipotesis kedua, hal ini meyimpulkan bahwa **terdapat perbedaan** kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran Numbered Head Together

dengan model pembelajaran Two Stay-Two Stray pada materi Limit

Fungsi Aljabar.

c. Hipotesis Ketiga

Hipotesis Penelitian: Terdapat perbedaan kemampuan pemecahan

masalah dan penalaran matematis siswa yang diajar dengan model

pembelajaran Numbered Head Together dengan model pembelajaran

Two Stay-Two Stray.

Hipotesis Statistik:

Ho: $\mu A_1 = \mu A_2$

Ha: $\mu A_1 \neq \mu A_2$

Terima Ho jika : $F_{hitung} < F_{tabel}$

Berdasarkan hasil analisis uji F yang terdapat pada rangkuman hasil

ANAVA sebelumnya, diperoleh nilai $F_{hitung} = 25,56$ (berdasarkan model

pembelajaran)dan $F_{hitung} = 13,26$ (berdasarkan kemampuan pemecahan

masalah dan penalaran matematis) serta nilai F_{tabel} pada taraf $\alpha(0,05)$ =

3,91. Akan dilakukan perbandingan antara F_{hitung} dengan F_{tabel} untuk

menentukan kriteria penerimaan dan penolakan Ho. Diketahui bahwa

nilai $F_{hitung} > F_{tabel}$, hal ini berarti bahwa menerima Ha dan menolak Ho.

Dari hasil pembuktian analisis hipotesis ketiga, hal ini meyimpulkan

bahwa **terdapat perbedaan** kemampuan pemecahan masalah dan

penalaran matematis siswa yang diajar dengan model pembelajaran

Numbered Head Together dengan model pembelajaran Two Stay-Two

Stray pada materi Limit Fungsi Aljabar.

d. Hipotesis Keempat

Hipotesis Penelitian: Terdapat interaksi antara model pembelajaran

terhadap kemampuan pemecahan masalah dan kemampuan penalaran

matematis siswa.

Hipotesis Statistik:

Ho: INT. A X B = 0

Ha: INT. A X B \neq 0

Terima Ho jika : $F_{hitung} < F_{tabel}$

Berdasarkan hasil analisis uji F yang terdapat pada rangkuman hasil

ANAVA sebelumnya, diperoleh nilai $F_{hitung} = 0,002$ serta nilai F_{tabel} pada

taraf $\alpha(0,05) = 3,91$. Akan dilakukan perbandingan antara F_{hitung} dengan

 F_{tabel} untuk menentukan kriteria penerimaan dan penolakan Ho. Diketahui

bahwa nilai $F_{hitung} < F_{tabel}$, hal ini berarti bahwa menerima Ho dan

menolak Ha.

Dengan demikian, dapat disimpulkan bahwa: tidak terdapat interaksi

antara model pembelajaran terhadap kemampuan pemecahan masalah

dan kemampuan penalaran matematis siswa pada materi Limit Fungsi

Aljabar.

D. Pembahasan Hasil Penelitian

Hasil penelitian quasi eksperimen mengenai kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model pembelajaran *numbered head together* dan *two stay-two stray* di kelas XI SMA KARTIKA I-2 Medan ditinjau dari tes kemampuan siswa yang menghasilkan skor rata-rata hitung yang berbeda-beda, dan berdasarkan dengan perhitungan analisis, hipotesisnya akan dijelaskan sebagai berikut:

1. Temuan hipotesis pertama memberikan kesimpulan bahwa:

Terdapat perbedaan kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *numbered head together* dengan model pembelajaran *two stay-two stray* pada materi Limit Fungsi Aljabar kelas XI SMA KARTIKA I-2 Medan. Yakni lebih baik penggunaan model pembelajaran *Two Stay-Two Stray* daripada model pembelajaran *Numbered Head Together* terhadap kemampuan pemecahan masalah matematis siswa.Hal ini sejalan dengan berbedaanya konsep pembelajaran antara kedua model tersebut.

Pembelajaran dengan menggunakan model *numbered head* together sendiri telah dikemukakan dalam buku Agus Suprijono bahwa model ini dirancang untuk mempengaruhi pola interaksi siswa. Pembelajaran dengan model ini ditandai oleh peserta didik bekerja dalam kelompok untuk mencapai tujuan pembelajaran, kelompok ditentukan secara heterogen, serta terdapat pemberian reward. Model ini banyak digunakan karena dengan menggunakan model ini variasi pembelajaran terlihat lebih menarik dan siswa bahkan tertarik dalam belajar khususnya dalam pelajaran matematika meskipun jam terakhir. Jadi dalam

pembelajaran yang menggunakan model ini, memungkinkan siswa untuk berdiskusi dan bertukar jawaban. Dengan adanya kegiatan diskusi inilah siswa akan menjadi lebih mudah memecahkan suatu permasalahan yang diberikan dan tujuan pembelajaran tercapai sebagaimana mestinya.

Pada model kedua ialah model pembelajaran *two stay-two stray*. Model pembelajaran yang dikembangkan oleh Spencer Kagan pada tahun 1992 ini memberi kesempatan pada kelompok untuk membagikan hasil dan informasi yang didapat kepada kelompok lain. Dimana seperti namanya, dua tinggal-dua tamu, model pembelajaran ini memberikan kesempatan setiap kelompok mengetahui hasil diskusi dari kelompok lain. Hal ini lah yang menjadi tolak ukur yang memungkinkan siswa untuk mendapatkan informasi lebih. Sehingga dalam memecahkan suatu permasalahan matematika yang diberikan akan jauh lebih mudah.

Hal ini sependapat dengan penelitian yang telah dilakukan oleh Tri Wahyudi dan Moersetyo Rahadi, hasil dari penelitiannya menunjukkan terdapat perbedaan kemampuan pemecahan masalah matematis siswa melalui penerapan metode pembelajaran *JIGSAW* dengan yang menggunakan metode pembelajaran STAD. ⁶⁶ Ini berarti menunjukkan bahwa kemampuan pemecahan masalah dapat berbeda hasilnya apabila diajar dengan berbagai macam model pembelajaran. Dalam hal ini model pembelajaran dapat dijadikan tolak ukur dalam hasil kemampuan pemecahan masalah matematis siswa di tiap-tiap sekolah.

Matematika STKIP Garut, Vol.2 No. 2 (Mei 2013), 133.

_

⁶⁶ Tri Wahyudi dan Moersetyo Rahadi, "Perbedaan Kemampuan Pemecahan Masalah Matematika Siswa Melalui Penerapan Metode Pembelajaran STAD dengan Siswa yang Menggunakan Metode Pembelajaran JIGSAW", Jurnal Pendidikan

Begitu juga pada penelitian yang telah dilakukan oleh Abdul Asis, Busnawir dan Hafiludin, hasil penelitiannya menunjukkan bahwa terdapat perbedaan yang signifikan terhadap kemampuan pemecahan masalah matematika antara siswa yang diajar dengan model pembelajaran *Inquiry* dan model pembelajaran PBL.⁶⁷ Maka dari itu, dalam hal ini juga model pembelajaran dapat dijadikan tolak ukur dalam hasil kemampuan pemecahan masalah matematis siswa di tiap-tiap sekolah.

2. Temuan hipotesis kedua memberikan kesimpulan bahwa:

Terdapat perbedaan kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *numbered head together* dengan model pembelajaran *two stay-two stray* pada materi Limit Fungsi Aljabar kelas XI SMA KARTIKA I-2 Medan. Yakni lebih baik penggunaan model pembelajaran *Two Stay-Two Stray* daripada model pembelajaran *Numbered Head Together* terhadap kemampuan penalaran matematis siswa.Hal ini sejalan dengan berbedanya konsep pembelajaran antara kedua model tersebut pada kemampuan siswa yang diharapkan.

Model pembelajaran *numbered head together* merupakan salah satu pembelajaran kooperatif yang mana pembelajaran ini dikenal dengan pembelajaran secara berkelompok. Dalam buku Tukiran, model ini merupakan model pembelajaran yang memberikan dorogan lebih dan memberikan tugas yang bersifat memungkinkan terjadinya interaksi secara terbuka serta hubungan yang bersifat interdependensi efektif

⁶⁷ Abdul Asis, dkk., "Perbedaan Kemampuan Pemecahan Masalah Matematika Siswa SMP yang Diajar dengan Model Pembelajaran InquiryTerbimbing dan *Problem Based Learning*", *Jurnal Pendidikan Matematika Univ. Halu Oleo*, Vol. 8 No. 2 (2019), 140.

diantara anggota kelompok. Dengan adanya hal tersebut dapat mempermudah siswa dalam bernalar, karena dalam penilaian kemampuan penalaran matematis siswa, kemampuan ini dapat dipengaruhi oleh faktor dalam diri individu/siswa maupun faktor luar individu/siswa.

Pada model pembelajaran *two stay-two stray*, model ini merupakan salah satu bentuk model pembelajaran yang berpusat pada siswa dan dalam proses pembelajarannya sangat membantu siswa untuk selalu aktif. Karena siswa aktif dalam proses pembelajaran maka kondisi kelas yang efektif dan tujuan pembelajaran yang diharapkan juga tercapai. Dengan tercapainya hal tersebut yang merupakan faktor dari luar individu pada proses pembelajaran, maka akan mempengaruhi proses bernalar siswa pula. Seperti yang sudah dijelaskan sebelumnya, bahwa kemampuan penalaran matematis siswa dapat dipengaruhi oleh faktor dalam diri individu maupun faktor dari luar individu.

Hal ini sependapat dengan penelitian yang telah dilakukan oleh Indah Syahputri dan Martua Manullang, hasil penelitiannya menunjukkan bahwa terdapat perbedaan yang signifikan terhadap kemampuan penalaran matematis yang diajar dengan menggunakan model pembelajaran *Discovery Learning* dan model pembelajaran STAD, yakni lebih tinggi dengan model *Discovery Learning*. Ini menunjukkan bahwa tiap kemampuan penalaran matematis yang diajar dengan model pembelajaran, memilki hasil yang berbeda. Maka dari itu model

68 Indah S dan Martua Manullang, "Perbedaan kemampuan Penalaran Matematis Siswa yang Diajar dengan Model Pembelajaran *Discovery Learning* dan Model Pembelajaran Kooperatif Tipe STAD Di Kelas VIII SMPN 6 Medan" *Jurnal FMIPA*

UNIMED, Vol. 3 No. 2 (Agustus 2017), 37.

pembelajaran dapat dijadikan tolak ukur dalam perhitungan hasil kemampuan penalaran matematis siswa di tiap-tiap sekolah.

Begitu juga pada penelitian yang dilakukan oleh Nur Tri Julia, hasil penelitiannya menunujukkan terdapat perbedaan kemampuan penalaran matematis antara siswa yang diajar dengan pembelajaran berbasis masalah dan siswa yang diajar dengan pembelajaran penemuan terbimbing. Maka dari itu tidak hanya model pembelajaran, tetapi jenis pembelajaran juga dapat dijadikan tolak ukur dalam hasil kemampuan penalaran matematis siswa di tiap-tiap sekolah.

3. Temuan hipotesis ketiga memberikan kesimpulan bahwa:

Terdapat perbedaan kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model pembelajaran numbered head together dengan yang diajar dengan model pembelajaran two stay-two stray pada materi Limit Fungsi Aljabar kelas XI SMA KARTIKA I-2 Medan. Yakni lebih baik penggunaan model pembelajaran Two Stay-Two Stray daripada model pembelajaran Numbered Head Together terhadap kemampuan pemecahan masalah dan penalaran matematis siswa. Hal ini sejalan dengan beberapa penelitian relevan yang sudah dipaparkan bahwa antara kedua model tersebut menghasilkan hasil yang berbeda pada tiap kemampuannya.

Model pembelajaran *Numbered Head Together* merupakan model pembelajaran secara berkelompok yang sangat mengarahkan siswa untuk

-

⁶⁹ Nur Tri Julia, "Perbedaan Kemampuan Penalaran Matematis Siswa antara Model Pembelajaran Berbasis Masalah dan Penemuan Terbimbing di SMAN 1 Binjai Kabupaten Langkat", *Jurnal Matematics Paedagogic*, Vol. 3 No. 2 (Maret 2019), 134.

berdiskusi dalam kelompok tersebut. Diskusi yang dimaksud ialah proses untuk menemukan jawaban yang paling sesuai dari soal yang diberikan. Sistem dalam model pembelajaran ini yaitu tiap-tiap siswa dalam kelompok dipastikan mendapat nomor kepala yang mana nantinya akan dipanggil secara acak oleh guru untuk memaparkan hasil diskusi kelompoknya. Jadi, tiap siswa dalam kelompok diharapkan bahkan diwajibkan menguasai apa yang sudah disikusikan sebelumnya didalam kelompoknya. Dalam hal ini, kemampuan pemecahan masalah dan penalaran matematis siswa akan terukur dengan sistem pembelajaran pada model tersebut.

Sama halnya dengan model pembelajaran *Numbered Head Together*, model pembelajaran *Two Stay-Two Stray* juga merupakan pembelajaran secara berkelompok, namun memiliki sistem pembelajaran yang berbeda. Dalam model TSTS ini 2 orang akan tinggal di kelompoknya dan 2 orang lagi akan bertamu ke kelompok lain. Hal ini dilakukan untuk menambah informasi antara kelompok yang satu dengan kelompok yang lain. Tidak hanya mengetahui informasi atau hasil diskusi dari kelompok sendiri, namun juga mengetahui hasil diskusi dari kelompok lain.

Maka dari itu, berdasarkan pemaparan dari kedua model pembelajaran diatas, hasil kemampuan pemecahan masalah dan penalaran matematis siswa yang diajarkan dengan keduanya akan berbeda pula dikarenakan perbedaan antara sistem pembelajaran model satu dengan sistem pembelajaran model kedua.

Hal ini sependapat dengan penelitian yang dilakukan Indah Wulandari, hasil penelitiannya menunjukkan bahwa terdapat perbedaan kemampuan penalaran dan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *Jigsaw* dengan siswa yang diajar model pembelajaran *Mind Mapping*. Ini menunjukkan bahwa model pembelajaran dapat dijadikan tolak ukur dalam hasil kemampuan pemecahan masalah dan penalaran matematis siswa.

Begitu juga pada penelitian yang dilakukan oleh Ike Nataliasari, hasil penelitiannya menunjukkan terdapat perbedaan kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model pembelajaran *Think Pair Share* dengan siswa yang diajar dengan pembelajaran konvensional. Dalam hal ini menunjukkan bahwa kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa dapat diukur dengan segala jenis model maupun jenis pembelajaran. Baik itu pembelajaran secara kelompok atau kooperatif, maupun pembelajaran biasa atau konvensional.

4. Temuan hipotesis keempat memberikan kesimpulan bahwa:

Tidak terdapat interaksi yang signifikan antara model pembelajaran terhadap kemampuan pemecahan masalah dan penalaran matematis siswa pada materi Limit Fungsi Aljabar Kelas XI SMA KARTIKA I-2 Medan. Hal ini terjadi karena nilai F_{hitung} interaksi yang

⁷⁰ Indah Wulandari, "Perbedaan Kemampuan Penalaran dan Pemecahan Masalah Matematis Sswa yang Diajar Melalui Model Pembelajaran Koopertaif Tipe *Jigsaw* dan *Mind Mapping* di MAN 2 Model Medan", *Skripsi Pend. Matematika UINSU* (2019), 206.

⁷¹ Ike Nataliasari, "Penggunaan Model Pembelajaran Kooperatif Tipe TPS untuk Meningkatkan Kemampuan Penalaran dan Pemecahan Masalah Matematis Siswa MTS", *Jurnal Pendidikan dan Keguruan Program Pascasarjana Univ. Terbuka*, Vol 1 No. 1 (2014), 1.

didapat = $0.002 < F_{tabel} = 3.91$. Maka berdasarkan pengujian hipotesis keempat bahwa tidak ada interaksi antara model pembelajaran *numbered* head together dan model pembelajaran two stay-two stray terhadap kemampuan pemecahan masalah dan penalaran matematis siswa.

Hal ini sependapat dengan penelitian yang telah dilakukan oleh Indah Wulandari, hasil penelitiannya menunjukkan tidak terdapat interaksi antara model pembalajaran terhadap kemampuan pemecahan masalah dan penalaran matematis siswa.⁷² Begitu juga pada penelitian yang dilakukan oleh Nurdalilah, Edi Syahputra dan Dian Armanto, hasil penelitiannya menunjukkan tidak terdapat interaksi antara model pembelajaran terhadap kemampuan penalaran dan pemecahan masalah matematis siswa.⁷³ Ini dapat terjadi dikarenakan pada saat peserta didik mengikuti pembelajaran yang menggunakan model apapun memiliki pengaruh tersendiri terhadap kemampuan peserta didik.

E. Keterbatasan Penelitian

Pada saat melakukan penelitian, terdapat beberapa kendala yang dialami peneliti saat proses pembelajaran berlangsung dengan menggunakan model yang diterapkan yakni sebagai berikut:

1. Pada saat pembelajaran di kelas eksperimen I dengan model pembelajaran Numbered Head Together, siswa kurang mampu memanfaatkan situasi

Indah Wulandari, *Ibid.*, 206.
 Nurdalilah, dkk., "Perbedaan Kemampuan Penalaran Matematika dan Pemecahan Masalah pada Pembelajaran Berbasis Masalah dan Pembelajaran Konvensional di SMAN 1 Kualuh Selatan" JURNAL UNIMED 2013), 1.

- kelompok untuk berdiskusi, mereka lebih cenderung untuk mengerjakannya secara individu dalam mengerjakan soal yang diberikan.
- 2. Pada saat proses pembelajaran di kelas eksperimen II dengan model pembelajaran *Two Stay-Two Stray*, banyak memakan waktu dalam pembagian kelompok dan siswa masih bingung dalam menentukan siapa yang tetap tinggal atau siapa yang bertamu.
- 3. Waktu penelitian yang sangat terbatas karena pihak sekolah akan melaksanakan ujian untuk kelas XII dan meliburkan kelas X dan XI, sehingga waktu untuk memperhatikan keadaan siswa sampel juga berkurang.

BAB V

PENUTUP

A. Kesimpulan

Berdasarkan hasil penelitian yang telah diperoleh, serta permasalahan yang telah dirumuskan, peneliti membuat kesimpulan sebagai berikut:

- 1. **Terdapat perbedaan** kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* dengan model pembelajaran *Two Stay-Two Stray* pada materi Limit Fungsi Aljabar di kelas XI SMA KARTIKA I-2 Medan. Hal ini ditinjau dari hasil uji hipotesis ANAVA bahwa nilai F_{hitung} (14,1147) > F_{tabel} (3,98). Yakni lebih baik penggunaan model pembelajaran *Two Stay-Two Stray* daripada model pembelajaran *Numbered Head Together* terhadap kemampuan pemecahan masalah matematis siswa.
- 2. Terdapat perbedaan kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran Numbered Head Together dengan model pembelajaran Two Stay-Two Stray pada materi Limit Fungsi Aljabar di kelas XI SMA KARTIKA I-2 Medan. Hal ini ditinjau dari hasil uji hipotesis ANAVA bahwa nilai F_{hitung} (12,0163) > F_{tabel} (3,98). Yakni lebih baik penggunaan model pembelajaran Two Stay-Two Stray daripada model pembelajaran Numbered Head Together terhadap kemampuan penalaran matematis siswa.
- 3. **Terdapat perbedaan** kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered Head Together* dengan model pembelajaran *Two Stay-Two Stray* pada materi

Limit Fungsi Aljabar di kelas XI SMA KARTIKA I-2 Medan. Hal ini ditinjau dari hasil uji hipotesis ANAVA bahwa nilai F_{hitung} (25,56) > F_{tabel} (3,91). Yakni lebih baik penggunaan model pembelajaran $Two\ Stay-Two\ Stray$ daripada model pembelajaran $Numbered\ Head\ Together$ terhadap kemampuan pemecahan masalah dan penalaran matematis siswa.

4. **Tidak terdapat interaksi** yang signifikan antara model pembelajaran yang digunakan terhadap kemampuan pemecahan masalah dan penalaran matematis siswa pada materi Limit Fungsi Aljabar di kelas XI SMA KARTIKA I-2 Medan. Hal ini ditinjau dari hasil uji hipotesis ANAVA bahwa nilai F_{hitung} (0,002) < F_{tabel} (3,91).

B. Implikasi Penelitian

Berdasarkan temuan dan kesimpulan yang telah dijelaskan, maka implikasi dari penelitian ini adalah:

Penelitian ini dilakukan pada kelas eksperimen I yang diajarkan dengan menggunakan model pembelajaran *Numbered Head Together* dan kelas eksperimen II yang diajarkan dengan model pembelajaran *Two Stay-Two Stray*.

Pada kelas eksperimen I, seluruh siswa dibagi menjadi 6 kelompok, yang mana tiap-tiap kelompok beranggotakan 6 orang dan dipilih secara heterogen. Pada pembelajaran di kelas eksperimen ini tiap siswa dalam kelompok diberikan nomor kepala yang mana nantinya akan dipanggil oleh guru secara acak untuk memaparkan hasil diskusi kelompoknya. Tiap siswa diberikan masalah atau soal yang mana dalam menyelesaikan masalah/soal tersebut siswa dituntut untuk berdiskusi dengan kelompoknya masing-masing. Tiap-tiap kelompok diberikan

masalah yang sama yang harus diselesaikan. Lalu tiap kelompok diminta untuk berdiskusi dalam memberikan jawaban atau simpulan dari masalah/soal yang diberikan tadi. Sedangkan pada pembelajaran di kelas eksperimen II. Seluruh siswa dibagi menjadi 9 kelompok, yang mana tiap-tiap kelompok beranggotakan 4 orang dan dipilih secara heterogen. Tiap-tiap kelompok menentukan 2 anggota yang tinggal di kelompoknya, dan 2 anggota yang bertamu ke kelompok lain. Anggota kelompok yang bertamu mencari tahu informasi pada kelompok yang telah ditentukan, sedangkan anggota kelompok yang tinggal memberikan informasi yang telah mereka diskusikan kepada anggota kelompok lain yang bertamu. Setelah sudah mendapatkan informasi, anggota kelompok tamu kembali ke kelompok asalnya dan sama-sama membuat kesimpulan sesuai dengan hasil kelompok masing-masing.

Pada temuan pertama menunjukkan bahwa model pembelajaran *Numbered Head Together* dan model pembelajaran *Two Stay-Two Stray* **terdapat perbedaan** terhadap kemampuan pemecahan masalah matematis siswa pada materi Limit Fungsi Aljabar di kelas XI SMA KARTIKA I-2 Medan.

Pada temuan kedua menunjukkan bahwa model pembelajaran *Numbered Head Together* dan model pembelajaran *Two Stay-Two Stray* **terdapat perbedaan** terhadap kemampuan penalaran matematis siswa pada materi Limit

Fungsi Aljabar di kelas XI SMA KARTIKA I-2 Medan

Pada temuan ketiga menunjukkan bahwa kemampuan pemecahan masalah dan penalaran matematis siswa yang diajar dengan model pembelajaran *Numbered*Head Together terdapat perbedaan dengan yang diajar dengan model

pembelajaran *Two Stay-Two Stray* pada materi Limit Fungsi Aljabar di kelas XI SMA KARTIKA I-2 Medan.

Pada temuan keempat menunjukkan **tidak terdapat interaksi** yang signifikan antara model pembelajaran yang digunakan terhadap kemampuan pemecahan masalah dan penalaran matematis siswa pada materi Limit Fungsi Aljabar di kelas XI SMA KARTIKA I-2 Medan.

Sehingga dalam hal ini pembelajaran matematika dengan menggunakan model pembelajaran *Two Stay-Two Stray* dapat meningkatkan kemampuan pemecahan masalah dan penalaran matematis siswa. Hal ini dikarenakan nilai rata-rata kemampuan siswa yang menggunakan model *Two Stay-Two Stray* lebih tinggi dibandingkan dengan nilai rata-rata kemampuan siswa yang menggunakan model *Numbered Head Together*. Dengan menerapkan model pembelajaran *Two Stay-Two Stray* dengan baik dan benar, dapat membuat siswa menjadi lebih aktif dan nalar dalam proses pembelajaran yang berlangsung. Karena hal ini berdampak pada kemampuan pemecahan masalah dan penalaran matematis siswa. Siswa yang awalnya membenci pelajaran matematika dan menganggap matematika sulit dipahami serta membosankan berubah menjadi pelajaran yang menyenangkan dan mudah dipelajari. Guru juga menjadi lebih mudah dalam kegiatan belajar mengajar dan dalam mengelola kelas.

C. Saran

Berdasarkan hasil penelitian yang diperoleh, peneliti ingin memberikan saransaran sebagai berikut:

- 1. Bagi Guru, pembelajaran dengan menggunakan model pembelajaran *Two Stay-Two Stray* lebih baik dalam mengembangkan kemampuan pemecahan masalah dan kemampuan penalaran matematis siswa, maka dari itu pembelajaran dengan model ini dapat digunakan guru dalam proses pembelajaran matematika.
- 2. Bagi Guru, sebaiknya pada saat proses pembelajaran, guru harus bisa mengeksplorasi pengetahuan siswa seperti dengan memberikan soal-soal dalam tiap proses pembelajaran berlangsung. Hal ini akan membuat siswa menjadi lebih paham akan materi yang diberikan.
- 3. Bagi sekolah agar hasil dari penelitian ini dapat dijadikan sebagai informasi pengetahuan dan pengalaman bagi yang membacanya.
- 4. Bagi peneliti selanjutnya, peneliti dapat melakukan peelitian pada materi ajar yang lain, agar dapat dijadikan studi bandingan dalam meningkatkan mutu dan kualitas pendidikan khususnya dalam pelajaran matematika.

DAFTAR PUSTAKA

- Adji, Nahrowi dan Rostika, Deti. 2006. *Konsep Dasar Matematika*. Bandung: UPI Press.
- Al-Quran dan Terjemahannya. 2010. Bandung: Dipenogoro.
- Alfi Fauzi, Fendi. 2013. Pengaruh Penggunaan Model Pembelajaran Kooperatif Tipe Numbered Head Together terhadap Kemampuan Pemecahan Masalah Matematika Siswa. Skripsi Jurusan Pend. Matematika FMIPA Univ. Negeri Gorontalo.
- Ananda, Rusydi dan Amiruddin. 2017. *Inovasi Pendidikan*. Medan: CV Widya Puspita.
- Apriliani. 2015. Pengaruh Model Pembelajaran Kooperatif Tipe NHT terhadap Kemampuan Pemecahan Masalah Matematik dalam Materi Operasi Hitung Campuran pada Pecahan. Skripsi Universitas Pendidikan Indonesia.
- Arikunto, Suharsimi. 2013. *Dasar-Dasar Evaluasi Pendidikan*. Jakarta: PT Bumi Aksara.
- Asis, Abdul, dkk., 2019. Perbedaan Kemampuan Pemecahan Masalah Matematika Siswa SMP yang Diajar dengan Model Pembelajaran InquiryTerbimbing dan Problem Based Learning. Jurnal Pendidikan Matematika Univ. Halu Oleo.
- Cahyani, Hesti dan W Setyawati, Ririn. 2016."Pentingnya Peningkatan Kemampuan Pemecahan Masalah melalui PBL untuk Mempersiapkan Generasi Unggul Menghadapi MEA". *Jurnal UNNES Semarang*.
- Hanafiah, Nanang dan Suhana, Cucu. 2012. *Konsep Strategi Pembelajaran*. Bandung: PT Refika Aditama.
- Handayani, Yanti. 2019. "Perbedaan Model Pembelajaran Kooperatif Tipe *Two Stay Two Stray* dan *Numbered Head Together* Terhadap Hasil Belajar". *Jurnal Ilmu dan Pendidikan STKIP PGRI Bangkalan*. Vol. 3 No. 2.
- Hendriana, Heris dan Soemarmo, Utari. 2016. *Penilaian Pembelajaran Matematika*. Bandung: PT Reflika Aditama.
- Jaya, Indra dan Ardat. 2013. *Penerapan Statistik Untuk Pendidikan*. Bandung: Citapustaka Media Perintis.
- Kurniasih, Imas dan Sani, Berlin. 2016. *Ragam Pengembangan Model Pembelajaran Untuk Peningkatan Profesionalitas Guru*. Jakarta: Kata Pena.

- Lestari, Eka Kurnia dan Ridwan Yudhanegara, Mokhammad. 2015. *Penelitian Pendidikan Matematika*. Bandung: PT Refika Aditama.
- Ling, Jonathan. 2011. *Psikologi Kognitif*. Jakarta: PT Gelora Aksara Pratama.
- Megawanti, Priarti. 2015. *Meretas Permasalahan Pendidikan di Indonesia*. Prodi Matematika, Fak. Teknik, Matematika dan IPA: Univ. Indraprasta PGRI).
- Miswar, dkk., 2015. Akhlak Tsawuf. Medan: Perdana Publishing.
- Musrimin, As'r. 2011. Efektivitas Pendekatan Pembelajaran Matematika Realistik dalam Meningkatkan Kemampuan Penalaran Matematika Siswa Kelas VII SMP Negeri 8 Kendari. Univeristas Pendidikan Indonesia.
- Nataliasari, Ike. 2014. Penggunaan Model Pembelajaran Kooperatif Tipe TPS untuk Meningkatkan Kemampuan Penalaran dan Pemecahan Masalah Matematis Siswa MTS. Jurnal Pendidikan dan Keguruan Program Pascasarjana Univ. Terbuka.
- Nizar Rangkuti, Ahmad. 2016. *Metode Penelitian Pendidikan Pendekatan Kuantitatif, Kualitatif, PTK dan Penelitian Pengembangan*. Bandung: Citapustaka Media.
- Nurdalilah, dkk., 2013. Perbedaan Kemampuan Penalaran Matematika dan Pemecahan Masalah pada Pembelajaran Berbasis Masalah dan Pembelajaran Konvensional di SMAN 1 Kualuh Selatan. JURNAL UNIMED.
- Nurkholis. 2013. *Pendidikan Dalam Upaya Memajukan Teknologi*. Universitas Negeri Jakarta.
- Nurul Hidayatillah, Lia. 2013. Perbedaan Kemampuan Pemecahan Masalah Matematis Siswa yang Mendapatkan Model Pembelajaran Kooperatif Tipe Two Stay-Two Stray dengan yang Mendapatkan Model Pembelajaran Numbered Head Together. Jurnal Pendidikan Matematika STKIP Garut.
- Retnawati, Heri. 2016. *Analisis Kuantitatif Instrumen Penelitian*. Yogyakarta: Parama Publishing..
- Rohman, Arif. 2014. *Epistimologi dan Logika Filsafat Untuk Pengembangan Pendidikan*. Yogyakarta: Aswaja Presindo.
- S. Sitompul, Deanova. 2012. Perbedaan Belajar Siswa Menggunakan Model Pembelajaran Kooperatif Tipe Numbered Head Together dengan Two Stay-Two Stray di Kelas ZI IA SMAN 1 Hamparan Perak T.P 2011/2012. Thesis Universitas Negeri Medan.
- Sanjaya, Wina. 2008. Perencanaan dan Desain Sistem Pembelajaran. Jakarta:

- Prenada Media Group.
- Setiawan, Eko. 2018. *Pembelajaran Tematik Teoritis & Praktis*. Jakarta: Erlangga.
- Setyo Winarni, Endang dan Harmini, Sri. 2017. *Matematika untuk PGSD*. Bandung: PT Remaja Rosdakarya.
- Shoimin, Aris. 2014. 68 Model Pembelajaran Inovatif dalam Kurikulum 2013. Yogyakarta: Ar-Ruz Media.
- Suderajat, Muslihuddin, dan Hendara, Ujang. 2012. *Revolusi Mengajar*. Bandung : HDP Press.
- Sudihartinih, Eyus. 2012. "Meningkatkan Kemampuan Penalaran Matematik Siswa SMA Melalui Pembelajaran Menggunakan Tugas Bentuk Superitem". *Jurnal Universitas Pendidikan Indonesia*.
- Sudijono, Anas. 2007. *Pengantar Evaluasi Pendidikan*. Jakarta: Raja Grafindo Persada.
- Sugiyono. 2016. *Metode Penelitian Kuantitatif, Kualitatif, dan R&D*, Bandung: Alfabeta.
- Sujono. 1988. Pelajaran Matematika untuk Sekolah Menengah. Jakarta: P2LPTK.
- Suprijono, Agus. 2016. *Model-Model Pembelajaran Emansipatoris*. Yogyakarta: Pustaka Belajar.
- Syahputri, Indah dan Manullang, Martua. 2017. Perbedaan kemampuan Penalaran Matematis Siswa yang Diajar dengan Model Pembelajaran Discovery Learning dan Model Pembelajaran Kooperatif Tipe STAD Di Kelas VIII SMPN 6 Medan. Jurnal FMIPA UNIMED.
- Syahrum dan Salim. 2014. *Metodologi Penelitian Kuantitatif. Bandung: Ciptapustaka Media.*
- Tafsir Learn Quran https://tafsir.learn-quran.co/id/surat-94-al-inshirah/ayat-6-8 diakses 03 Februari 2020
- Taniredja ,Tukiran. Dkk., 2011. *Model-model Pembelajaran Inovatif.* Bandung: Alfabeta.
- Taniredja, Tukiran. Dkk., 2017. *Model-Model Pembeajaran Inovatif dan Efektif.* Bandung: Alfabeta.
- Tri Julia, Nur. 2019. Perbedaan Kemampuan Penalaran Matematis Siswa antara Model Pembelajaran Berbasis Masalah dan Penemuan Terbimbing di

- SMAN 1 Binjai Kabupaten Langkat. Jurnal Matematics Paedagogic.
- Trianto. 2011. *Mendesain Model Pembelajaran Inovatif-Progresif.* Jakarta: Kencana Prenada Media Group.
- Trianto. 2011. *Model Pembelajaran Terpadu: Konsep, Strategi, dan Implementasinya dalam KTSP*. Jakarta: PT Bumi Aksara.
- Wahyudi, Tri dan Rahadi, Moersetyo. 2013. *Perbedaan Kemampuan Pemecahan Masalah Matematika Siswa Melalui Penerapan Metode Pembelajaran STAD dengan Siswa yang Menggunakan Metode Pembelajaran JIGSAW*. Jurnal Pendidikan Matematika STKIP Garut.
- Wijaya, Candra dan Rifa'I, Muhammad. 2016. *Dasar-Dasar Manajemen*. Medan: Perdana Publishing.
- Wulandari, Indah. 2019. Perbedaan Kemampuan Penalaran dan Pemecahan Masalah Matematis Sswa yang Diajar Melalui Model Pembelajaran Koopertaif Tipe Jigsaw dan Mind Mapping di MAN 2 Model Medan. Skripsi Pend. Matematika UINSU.

LAMPIRAN 1

RPP NHT

Satuan Pendidikan : SMA Kartika I-2 Medan

Mata Pelajaran : Matematika

Materi : Limit Fungsi Aljabar

Kelas/Semester : XI/ Genap

Alokasi Waktu : 2 x 45 menit

A. Kompetensi Inti

KI 1. Menghargai dan menghayati ajaran agama yang dianutnya.

- KI 2. Menghargai dan menghayati perilaku jujur, disiplin, tanggung jawab, peduli (toleransi, gotong royong), santun, percaya diri, dalam berinteraksi secara efektif dengan lingkungan sosial dan alam dalam jangkauan pergaulan dan keberadaannya.
- KI 3. Memahami pengetahuan (faktual, konseptual, dan prosedural) berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya terkait fenomena dan kejadian tampak mata.
- KI 4. Menunjukkan keterampilan menalar,mengolah, dan menyaji secara kreatif, produktif, kritis ,mandiri, kolaboratif dan komunikatif dalam ranah konkret dan ranah abstrak sesuai dengan yang dipelajari sekolah dan sumber lain yang sama dalam sudut pandang teori..

B. Kompetensi Dasar dan Indikator Pencapaian Kompetensi

Kompetensi Dasar (KD)	Ind	likator Pencapaian Kompetensi (IPK)
3.7 Menjelaskan limit	3.7.1	Menuliskan bentuk-bentuk pola limit
fungsi aljabar (fungsi		fungsi aljabar.
polinom dan fungsi	3.7.2	Menuliskan langkah-langkah
rasional) secara intuitif		penyelesaian dari suatu permasalahan
dan sifat-sifatnya, serta		limit fungsi aljabar.
menentukan	3.7.3	Mengilustrasikan suatu permasalahan

Kompetensi Dasar (KD)	Ind	likator Pencapaian Kompetensi (IPK)
eksistensinya.		nyata terkait materi limit fungsi aljabar
		ke dalam bentuk matematika.
	3.7.4	Menjelaskan konsep limit fungsi aljabar.
	3.7.5	Mengaitkan konsep pola limit fungsi
		aljabar dari sebuah permasalahan nyata
		dan menuliskannya dalam bentuk
		matematika.
	3.7.6	Menggunakan limit fungsi aljabar dalam
		menyelesaikan permasalahan
		kontekstual/nyata dalam kehidupan.
4.7 Menyelesaikan	4.7.1	Menuliskan limit fungsi aljabar
masalah yang berkaitan		berdasarkan masalah dalam kehidupan
dengan limit fungsi		nyata.
aljabar.	4.7.2	Menghitung permasalahan kontekstual
		terkait materi limit fungsi aljabar.

C. Tujuan Pembelajaran

- 1. Melalui kajian pustaka siswa dapat menuliskan bentuk-bentuk limit fungsi aljabar.
- 2. Melalui kegiatan diskusi siswa dapat menuliskan langkah-langkah penyelesaian dari suatu permasalahan terkait limit fungsi aljabar.
- 3. Melalui kegiatan diskusi siswa dapat mengilustrasikan suatu permasalahan nyata terkait materi limit fungsi aljabar.
- 4. Melalui kegiatan diskusi siswa dapat menjelaskan konsep limit fungsi aljabar.
- Melalui diskusi siswa dapat menuliskan contoh bentuk limit fungsi aljabar.
- 6. Melalui diskusi siswa dapat menuliskan dan menjelaskan konsep limit fungsi aljabar serta membuat model matematika dari suatu permasalahan nyata.

- Melalui diskusi siswa dapat mengaitkan konsep limit fungsi aljabar dengan permasalahan nyata, serta menuliskannya dalam bentuk matematika.
- 8. Melalui kajian pustaka dan siskusi siswa dapat menggunakan konsepkonsep limit fungsi aljabar dalam menyelesaikan permasalahan kontekstual/nyata dalam kehidupan.
- 9. Dengan latihan, siswa dapat menyelesaikan dan menghitung hasil akhir dari suatu permasalahan nyata terkait limit fugsi aljabar.

D. Materi Pembelajaran

1. Defenisi Limit

Limit secara bahasa dapat diartikan sebagai batas. Misalnya sebuah kartu ATM memiliki limit sebesar Rp. 5.000.000,00. Artinya kartu ATM tersebut memiliki batas Rp.5.000.000,00. Begitu juga dalam pembelajaran matematika, limit dapat diartikan sebagai batas yang dapat dicapai di suatu titik.

Limit Kiri dan Kanan Suatu Fungsi

 $\lim_{x\to a^-} f(x) = K$, jika x mendekati a^- dari kiri, maka nilai f(x) mendekati nilai K.

 $\lim_{x\to a^+} f(x) = L$, jika x mendekati a^+ dari kanan, maka nilai f(x) mendekati nilai L.

Suatu fungsi dikatakan memiliki/ada limit jika memenuhi syarat:

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

Terdapat beberapa teorema dalam limit jika n = bilangan bulat positif, k = konstanta, serta f dan g fungsi yang memiliki limit di a, sebagai berikut:

- 1. $\lim_{x\to a} k = k$
- 2. $\lim_{x\to a} x = a$
- 3. $\lim_{x\to a} k \cdot f(x) = k \cdot \lim_{x\to a} f(x)$
- 4. $\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$

5.
$$\lim_{x\to a} [f(x) \cdot g(x)] = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$$

6.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \lim_{x \to a} g(x) \neq 0$$

7.
$$\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$$

8.
$$\lim_{x \to a} \sqrt[n]{f(x)}$$
, dengan $\lim_{x \to a} f(x) > 0$, dan $n \in bilangan genap$

2. Menentukan Nilai Limit Fungsi Aljabar

a. Metode Subtitusi

Dengan cara mengganti peubah yang mendekati nilai tertentu dengan fungsi aljabarnya.

Contoh:

$$\lim_{x \to 2} 2x - 2 = 2(2) - 2 = 2$$

$$\lim_{x \to 3} x^2 - 3 = (3)^2 - 3 = 6$$

b. Metode Pemfaktoran

Digunakan apabila metode subtitusi menghasilkan nilai limit yang tidak terdefenisi.

Contoh:

$$\lim_{x \to 2} \frac{2x - 4}{x - 2} = \frac{2(2) - 4}{2 - 2} = \frac{0}{0}$$

c. Metode Merasionalkan Bentuk Aljabar

Mengalikan bentuk sekawan.

x - a bentuk sekawannya x + a

 \sqrt{a} – a bentuk sekawannya \sqrt{a} + a

 $\sqrt{x+a}$ – b bentuk sekawannya $\sqrt{x+a}$ + b

E. Metode Pembelajaran

1. Metode : Ceramah, tanya jawab, diskusi, dan penugasan.

2. Model : Numbered Head Together

F. Media, Sumber dan Alat

1. Media : Lembar Aktivitas Siswa

2. Sumber : Buku Matematika SMA/MA IPA Kelas XI

3. Alat : Papan Tulis dan Spidol serta Sumber Penunjang

Lainnya

G. Langkah-langkah Kegiatan Pembelajaran

Kegiatan	Deskripsi Kegiatan	Alokasi Waktu
Pendahulua n	 Guru memberi salam, mengajak peserta didik untuk mengawali dengan berdo'a, mengajak peserta didik merapikan kelas dan penampilan mereka, memeriksa kehadiran peserta didik, meminta peserta didik mempersiapkan perlengkapan dan peralatan yang diperlukan, dengan tujuan mengkondisikan suasana belajar yang menyenangkan. Guru menyampaikan kompetensi yang akan dicapai. Guru menyampaikan garis besar cakupan materi dan kegiatan yang akan dilakukan, kemudian mengerjakan LAS dengan cara diskusi kelompok 	10 menit
Inti	 Guru memberikan pengantar materi limit fungsi aljabar. Guru membagi peserta didik menjadi beberapa kelompok yang terdiri dari 6 orang, dan pemberian nomor kepada setiap peserta didik. Guru membagikan LAS yang berisi masalah yang akan dipecahkan bersama-sama. Siswa melakukan diskusi terhadap LAS/masalah yang sudah diberikan, guru mengamati proses diskusi siswa. 	70 menit

Vogiatan	Dodrninci Kogioton	Alokasi
Kegiatan	Deskripsi Kegiatan	Waktu
	5. Guru memanggil nomor secara acak. Dalam tahap	
	ini, guru menyebut satu nomor dan peserta didik	
	dengan nomor yang disebutkan dari tiap-tiap	
	kelompok mengangkat tangan dan menyiapkan	
	jawaban di depan kelas.	
	6. Peserta didik yang lain dan guru memberikan	
	tanggapan dan menganalisis hasil presentasi	
	meliputi tanya jawab untuk mengkonfirmasi,	
	memberikan tambahan informasi, melengkapi	
	informasi ataupun tanggapan lainnya.	
	7. Guru mengarahkan peserta didik untuk membuat	
	kesimpulan mengenai materi limit fungsi aljabar.	
Penutup	1. Guru meminta peserta didik mengerjakan Test	
	Akhir yang diberikan.	
	2. Guru bersama dengan peserta didik	
	mengidentifikasi kelebihan dan kekurangan	
	kegiatan pembelajaran dengan cara	
	mengidentifikasi kesulitan yang dialami peserta	10
	didik.	10 menit
	3. Guru memberikan gambaran jawaban tes.	
	4. Guru mengakhiri kegiatan belajar dengan	
	memberikan pesan untuk tetap belajar dan	
	meningkatkan sikap yang baik.	
	5. Guru meninggalkan ruangan dengan salam.	

H. Penilaian

1. Teknik Penilaian : Tes Tertulis

2. Bentuk Instrumen: Uraian

Medan, Maret 2020 Guru Matematika XI IPA 2

Kepala Sekolah

Muhammad Syahril Nst, S. Ag

<u>Dra. Hj. Zamiarni</u> NIP. 19630814 199203 2 004

Peneliti

<u>Dyan Wulandari Putri</u> NIM. 0305162083

LAMPIRAN 2

RPP TSTS

Satuan Pendidikan : SMA Kartika I-2 Medan

Mata Pelajaran : Matematika

Materi : Limit Fungsi Aljabar

Kelas/Semester : XI/ Genap

Alokasi Waktu : 2 x 45 menit

A. Kompetensi Inti

KI 1. Menghargai dan menghayati ajaran agama yang dianutnya.

- KI 2. Menghargai dan menghayati perilaku jujur, disiplin, tanggung jawab, peduli (toleransi, gotong royong), santun, percaya diri, dalam berinteraksi secara efektif dengan lingkungan sosial dan alam dalam jangkauan pergaulan dan keberadaannya.
- KI 3. Memahami pengetahuan (faktual, konseptual, dan prosedural) berdasarkan rasa ingin tahunya tentang ilmu pengetahuan, teknologi, seni, budaya terkait fenomena dan kejadian tampak mata.
- KI 4. Menunjukkan keterampilan menalar,mengolah, dan menyaji secara kreatif, produktif, kritis ,mandiri, kolaboratif dan komunikatif dalam ranah konkret dan ranah abstrak sesuai dengan yang dipelajari sekolah dan sumber lain yang sama dalam sudut pandang teori..

B. Kompetensi Dasar dan Indikator Pencapaian Kompetensi

Kompetensi Dasar (KD)	Ind	likator Pencapaian Kompetensi (IPK)
3.7 Menjelaskan limit	3.7.7	Menuliskan bentuk-bentuk pola limit
fungsi aljabar (fungsi		fungsi aljabar.
polinom dan fungsi	3.7.8	Menuliskan langkah-langkah
rasional) secara intuitif		penyelesaian dari suatu permasalahan
dan sifat-sifatnya, serta		limit fungsi aljabar.
menentukan	3.7.9	Mengilustrasikan suatu permasalahan

Kompetensi Dasar (KD)	Indikator Pencapaian Kompetensi (IPK)
eksistensinya.	nyata terkait materi limit fungsi aljabar
	ke dalam bentuk matematika.
	3.7.10 Menjelaskan konsep limit fungsi aljabar.
	3.7.11 Mengaitkan konsep pola limit fungsi
	aljabar dari sebuah permasalahan nyata
	dan menuliskannya dalam bentuk
	matematika.
	3.7.12 Menggunakan limit fungsi aljabar dalam
	menyelesaikan permasalahan
	kontekstual/nyata dalam kehidupan.
4.7 Menyelesaikan	4.7.3 Menuliskan limit fungsi aljabar
masalah yang berkaitan	berdasarkan masalah dalam kehidupan
dengan limit fungsi	nyata.
aljabar.	4.7.4 Menghitung permasalahan kontekstual
	terkait materi limit fungsi aljabar.

C. Tujuan Pembelajaran

- 1. Melalui kajian pustaka siswa dapat menuliskan bentuk-bentuk limit fungsi aljabar.
 - 2. Melalui kegiatan diskusi siswa dapat menuliskan langkah-langkah penyelesaian dari suatu permasalahan terkait limit fungsi aljabar.
 - 3. Melalui kegiatan diskusi siswa dapat mengilustrasikan suatu permasalahan nyata terkait materi limit fungsi aljabar.
 - 4. Melalui kegiatan diskusi siswa dapat menjelaskan konsep limit fungsi aljabar.
 - 5. Melalui diskusi siswa dapat menuliskan contoh bentuk limit fungsi aljabar.
 - 6. Melalui diskusi siswa dapat menuliskan dan menjelaskan konsep limit fungsi aljabar serta membuat model matematika dari suatu permasalahan nyata.

- Melalui diskusi siswa dapat mengaitkan konsep limit fungsi aljabar dengan permasalahan nyata, serta menuliskannya dalam bentuk matematika.
- 8. Melalui kajian pustaka dan siskusi siswa dapat menggunakan konsepkonsep limit fungsi aljabar dalam menyelesaikan permasalahan kontekstual/nyata dalam kehidupan.
- 9. Dengan latihan, siswa dapat menyelesaikan dan menghitung hasil akhir dari suatu permasalahan nyata terkait limit fugsi aljabar.

D. Materi Pembelajaran

1. Defenisi Limit

Limit secara bahasa dapat diartikan sebagai batas. Misalnya sebuah kartu ATM memiliki limit sebesar Rp. 5.000.000,00. Artinya kartu ATM tersebut memiliki batas Rp.5.000.000,00. Begitu juga dalam pembelajaran matematika, limit dapat diartikan sebagai batas yang dapat dicapai di suatu titik.

Limit Kiri dan Kanan Suatu Fungsi

 $\lim_{x\to a^-} f(x) = K$, jika x mendekati a dari kiri, maka nilai f(x) mendekati nilai K.

 $\lim_{x\to a^+} f(x) = L$, jika x mendekati a^+ dari kanan, maka nilai f(x) mendekati nilai L.

Suatu fungsi dikatakan memiliki/ada limit jika memenuhi syarat:

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x)$$

Terdapat beberapa teorema dalam limit jika n = bilangan bulat positif, k = konstanta, serta f dan g fungsi yang memiliki limit di a, sebagai berikut:

- 1. $\lim_{x\to a} k = k$
- 2. $\lim_{x\to a} x = a$
- 3. $\lim_{x\to a} k \cdot f(x) = k \cdot \lim_{x\to a} f(x)$

4.
$$\lim_{x\to a} [f(x) \pm g(x)] = \lim_{x\to a} f(x) \pm \lim_{x\to a} g(x)$$

5.
$$\lim_{x\to a} [f(x) \cdot g(x)] = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$$

6.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \lim_{x \to a} g(x) \neq 0$$

7.
$$\lim_{x \to a} [f(x)]^n = [\lim_{x \to a} f(x)]^n$$

8.
$$\lim_{x \to a} \sqrt[n]{f(x)}$$
, dengan $\lim_{x \to a} f(x) > 0$, dan $n \in bilangan genap$

2. Menentukan Nilai Limit Fungsi Aljabar

a. Metode Subtitusi

Dengan cara mengganti peubah yang mendekati nilai tertentu dengan fungsi aljabarnya.

Contoh:

$$\lim_{x \to 2} 2x - 2 = 2(2) - 2 = 2$$

$$\lim_{x \to 3} x^2 - 3 = (3)^2 - 3 = 6$$

b. Metode Pemfaktoran

Digunakan apabila metode subtitusi menghasilkan nilai limit yang tidak terdefenisi.

Contoh:

$$\lim_{x \to 2} \frac{2x - 4}{x - 2} = \frac{2(2) - 4}{2 - 2} = \frac{0}{0}$$

c. Metode Merasionalkan Bentuk Aljabar

Mengalikan bentuk sekawan.

x - a bentuk sekawannya x + a

 \sqrt{a} – a bentuk sekawannya \sqrt{a} + a

 $\sqrt{x+a}$ – b bentuk sekawannya $\sqrt{x+a}$ + b

E. Metode Pembelajaran

Metode : Ceramah, tanya jawab, diskusi, dan penugasan.

Model : Two Stay-Two Stray

F. Media, Sumber dan Alat

Media : Lembar Aktivitas Siswa

Sumber : Buku Matematika SMA/MA IPA Kelas XI

Alat : Papan Tulis dan Spidol serta Sumber Penunjang

Lainnya

G. Langkah-langkah Kegiatan Pembelajaran

Langkah-	Deskripsi Kegiatan		Alokasi
langkah	Guru	Siswa	Waktu
Pembelajaran	Guru	Siswa	
Pendahuluan	Apersepsi		
	1. Guru memulai	1. Siswa	
	pembelajaran	menjawab	
	dengan	salam dan	
	mengucap	berdoa sesuai	
	salam dan	kepercayaan	
	meminta	mereka masing-	
	seorang siswa	masing.	
	untuk	2. Siswa	
	memimpin doa	menyimak	
	sebelum belajar	informasi dari	10 menit
	serta	guru.	
	memeriksa		
	absensi.		
	2. Guru		
	mengingatkan		
	kembali		
	tentang materi		
	yang telah		
	diajarkan		
	sebelumnya		

		1. Siswa
	Motivasi	menyimak
	1. Guru	informasi
	menyampaikan	tentang
	tujuan	pembelejara
	pembelajaran	n yang akan
	yang akan	dipelajari.
	dicapai.	
		1. Siswa
	Persiapan	membentuk
	1. Guru meminta	kelompok
	siswa untuk	2. Siswa
	mementuk	mendiskusi
	beberapa	kan siapa
	kelompok yang	yang
	terdiri dari 4	menjadi
	orang siswa.	ketua
	2. Guru	kelompok.
	memberikan	
	waktu untuk	
	mendiskusikan	
	siapa yang	
	akan menjadi	
	ketua	
	kelompok di	
	kelompoknya.	
Inti	Eksplorasi	
	1. Guru	1. Siswa
	mengarahkan	mendiskusikan 15 menit
	setiap	cara
	kelompok	menyelesaikan
	untuk bekerja	soal cerita yang

	dikelompoknya		terkait dengan	
			_	
	untuk		limit fungsi	
	menyelesaikan		aljabar.	
	soal yang	2.	Siswa	
	terkait dengan		menerima LAS	
	limit fungsi		yang diberikan	
	aljabar		guru.	
2.	Guru			
	memberikan			
	Lembar			
	Aktivitas Siswa			
	(LAS) untuk			
	didiskusikan			
	yang berisi			
	soal-soal limit			
	fungsi aljabar.			
Elabo	rasi			
	rasi Guru meminta	1.	Siswa	
		1.	Siswa menentukan	
	Guru meminta setiap	1.	menentukan	
	Guru meminta	1.	menentukan dua orang	
	Guru meminta setiap kelompok	1.	menentukan dua orang anggota yang	
	Guru meminta setiap kelompok untuk menentukan	1.	menentukan dua orang anggota yang bertugas	
	Guru meminta setiap kelompok untuk menentukan dua orang	1.	menentukan dua orang anggota yang bertugas sebagai tamu,	40
	Guru meminta setiap kelompok untuk menentukan dua orang anggota yang	1.	menentukan dua orang anggota yang bertugas sebagai tamu, sedangkan dua	40 menit
	Guru meminta setiap kelompok untuk menentukan dua orang anggota yang bertugas	1.	menentukan dua orang anggota yang bertugas sebagai tamu, sedangkan dua orang lainnya	40 menit
	Guru meminta setiap kelompok untuk menentukan dua orang anggota yang bertugas sebagai tamu,	1.	menentukan dua orang anggota yang bertugas sebagai tamu, sedangkan dua orang lainnya sebagai tuan	40 menit
	Guru meminta setiap kelompok untuk menentukan dua orang anggota yang bertugas sebagai tamu, sedangkan dua		menentukan dua orang anggota yang bertugas sebagai tamu, sedangkan dua orang lainnya sebagai tuan rumah.	40 menit
	Guru meminta setiap kelompok untuk menentukan dua orang anggota yang bertugas sebagai tamu, sedangkan dua orang lainnya		menentukan dua orang anggota yang bertugas sebagai tamu, sedangkan dua orang lainnya sebagai tuan rumah. Siswa	40 menit
	Guru meminta setiap kelompok untuk menentukan dua orang anggota yang bertugas sebagai tamu, sedangkan dua orang lainnya sebagai tuan		menentukan dua orang anggota yang bertugas sebagai tamu, sedangkan dua orang lainnya sebagai tuan rumah. Siswa mendengarkan	40 menit
	Guru meminta setiap kelompok untuk menentukan dua orang anggota yang bertugas sebagai tamu, sedangkan dua orang lainnya sebagai tuan rumah.		menentukan dua orang anggota yang bertugas sebagai tamu, sedangkan dua orang lainnya sebagai tuan rumah. Siswa mendengarkan arahan dari	40 menit
	Guru meminta setiap kelompok untuk menentukan dua orang anggota yang bertugas sebagai tamu, sedangkan dua orang lainnya sebagai tuan rumah.	2.	menentukan dua orang anggota yang bertugas sebagai tamu, sedangkan dua orang lainnya sebagai tuan rumah. Siswa mendengarkan	40 menit

kelompok
mana yang
harus
dikunjungi oleh
anggota yang
bertugas
sebagai tamu.

- 3. Guru meminta siswa untuk mendiskusikan LAS yang telah diberikan.
- 4. Setelah waktu berdiskusi selesai, guru meminta anggota yang bertugas sebagai tamu segera menuju kelompok yang telah ditentukan untuk
- 5. Setelah waktu
 bertamu
 selesai, guru
 meminta siswa
 kembali ke
 kelompoknya

memperoleh

informasi.

mendiskusikan

LAS yang
diberikan oleh
guru.

- 4. Siswa yang bertugas sebagai tamu segera menuju ke kelompok yang telah ditentukan untuk memperoleh infirmasi.
- Siswa yang bertamu kembali ke kelompoknya masing-masing.

	masing-masing.	
	Konfirmasi	
		mempresentasik an hasil diskusi kelompoknya. 2. Siswa memberi tanggapan serta pertanyaan tentang hasil diskusi kelompok. 10 menit
Penutup	diskusi. 1. Guru meminta siswa untuk menyimpulkan tentang cara penyelesaian limit fungsi aljabar. 2. Guru memberikan informasi tentang materi pada pertemuan selanjutnya dan	menyimpulkan materi limit fungsi aljabar. 2. Siswa mendengarkan arahan dari guru tentang materi pada pertemuan selanjutnya beserta tugas

	guru	3. Siswa	
	memberikan	menyimak	
	tugas untuk	pesan yang	
	dikumpulkan	diberikan guru	
	pada pertemuan	dan menjawab	
	selanjutnya.	ucapan salam	
3	. Guru	dari guru.	
	mengakhiri		
	kegiatan belajar		
	dengan		
	memberikan		
	pesan untuk		
	tetap semangat		
	belajar dan		
	diakhiri dengan		
	salam.		

H. Penilaian

a. Teknik Penilaian : Tes Tertulis

b. Bentuk Instrumen: Uraian

Medan, Maret 2020

Guru Matematika XI IPA 4

Kepala Sekolah

Muhammad Syahril Nst, S. Ag

Ritawan, S.Pd.I

Peneliti

<u>Dyan Wulandari Putri</u> NIM. 0305162083

SOAL TES KEMAMPUAN PEMECAHAN MASALAH

- 1. Fungsi $f(x) = x^2 + 3$, untuk setiap x bilangan real. Tunjukkan nilai f(x) jika x mendekati 0?
 - a. Identifikasikan apa yang diketahui dan ditanyakan dari permasalahan diatas.
 - b. Nyatakanlah dalam bentuk model matematika permasalahan diatas dimulai dari rumus hingga penyelesaian.
 - c. Tuliskan kembali kesimpulan yang didapat dari permasalahan diatas.
- 2. Fungsi $f(x) = \begin{cases} x 1, & x < 0 \\ 3x, & 0 \le x < 4 \\ x^2 4, & x \ge 4 \end{cases}$, tunjukkan bahwa nilai $\lim_{x \to 0} f(x)$ dan $\lim_{x \to 4} f(x)$

f(x) ada?

- a. Identifikasikan apa yang diketahui dan ditanya dari permasalahan diatas?
- b. Nyatakanlah dalam bentuk model matematika permasalahan diatas dimulai dari rumus hingga penyelesaian.
- c. Tuliskan kembali kesimpulan yang didapat dari permasalahan diatas.
- 3. Dengan cara substitusi, hitunglah nilai $\lim_{t\to 2} \frac{4t^2+6}{3t-4}$
 - a. Identifikasikan apa yang diketahui dan ditanya dari permasalahan diatas?
 - b. Nyatakanlah dalam bentuk model matematika permasalahan diatas dimulai dari rumus hingga penyelesaian.
 - c. Tuliskan kembali kesimpulan yang didapat dari permasalahan diatas.
- 4. Dengan cara merasionalkan bentuk sekawan, selidiki nilai dari $\lim_{x\to 2} \frac{\sqrt{x+7}-3}{x-2}$
 - a. Identifikasikan apa yang diketahui dan ditanya dari permasalahan diatas?

- b. Nyatakanlah dalam bentuk model matematika permasalahan diatas dimulai dari rumus hingga penyelesaian.
- c. Tuliskan kembali kesimpulan yang didapat dari permasalahan diatas.
- 5. Pecahkan nilai $f(x) = \frac{5x^3 40}{x^2 4}$ jika $x \to 2$.
 - a. Identifikasikan apa yang diketahui dan ditanya dari permasalahan diatas?
 - b. Nyatakanlah dalam bentuk model matematika permasalahan diatas dimulai dari rumus hingga penyelesaian.
 - c. Tuliskan kembali kesimpulan yang didapat dari permasalahan diatas.

KUNCI JAWABAN TES PEMECAHAN MASALAH

Nomor	Kunci Jawaban	Skor
Soal	Kunci gawaban	SKOI
Soai		
1	a. Memahami Masalah	7
	Diketahui:	
	Fungsi $f(x) = x^2 + 3$	
	Dimana x adalah bilangan real	
	Ditanya:	
	Berapa nilai f(x) jika x mendekati 0 ?	
	b. Merencanakan Pemecahan dan Melaksanakan	7
	Pemecahannya sesuai Rencana	
	$f(x)$ mendekati $0 = \lim_{x \to 0} f(x)$	
	$\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 + 3$	
	$= 0^2 + 3$	
	= 3	
	c. Memeriksa Kembali atau Membuat Kesimpulan	6
	Jadi nilai dari $\lim_{x\to 0} x^2 + 3$ adalah 3	
2	a. Memahami Masalah	7
2	Diketahui:	,
	Fungsi $f(x) = \begin{cases} x - 1, & x < 0 \\ 3x, & 0 \le x < 4 \\ x^2 - 4, & x \ge 4 \end{cases}$	
	$(x^2-4, x \ge 4)$	
	Ditanya:	
	Tunjukkan bahwa nilai $\lim_{x\to 0} f(x)$ dan $\lim_{x\to 4} f(x)$ ada atau	
	tidak? $x \to 0$ $x \to 4$	
	b. Merencanakan Pemecahan dan Melaksanakan	7
	Pemecahannya sesuai Rencana	
	Syarat:	
	$\lim_{x \to a} f(x) \text{ dikatakan ada jika:}$	
	$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) [sisi kanan = sisi kiri]$	

	• $\lim_{x\to 0} f(x)$ ada jika $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x)$	
	Karena:	
	$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$	
	$\lim_{x \to 0^{-}} (x-1) = \lim_{x \to 0^{+}} 3x$	
	$ \begin{array}{ccc} & \xrightarrow{x \to 0} & \xrightarrow{x \to 0} \\ & 0 - 1 & = & 3(0) \end{array} $	
	-1 ≠ 0	
	Maka $\lim_{x\to 0} f(x)$ tidak ada.	
	• $\lim_{x \to 4} f(x)$ ada jika $\lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x)$	
	Karena:	
	$\lim_{x \to 4^-} f(x) = \lim_{x \to 4^+} f(x)$	
	$\lim_{x \to 4^{-}} 3x = \lim_{x \to 4^{+}} x^{2} - 4$	
	$3(4) = 4^{2} - 4$	
	12 = 12	
	Maka $\lim_{x\to 4} f(x)$ ada.	
	c. Memeriksa Kembali atau Membuat Kesimpulan	6
	Jadi berdasarkan perhitungan diatas, maka nilai $\lim_{x\to 0}$	
	$f(x)$ tidak ada dan nilai $\lim_{x\to 4} f(x)$ ada.	
3	a. Memahami Masalah	7
	Diketahui:	
	$\lim_{t \to 2} \frac{4t^2 + 6}{3t - 4}$	
	1-72 30 1	
	Ditanya:	
	Dengan cara substitusi, berapa nilai dari $\lim_{t\to 2}$?	
	b. Merencanakan Pemecahan dan Melaksanakan	
	Pemecahannya sesuai Rencana $4t^2 + 6 \qquad 4(2)^2 + 6$	7
	$\lim_{t \to 2} \frac{4t^2 + 6}{3t - 4} = \frac{4(2)^2 + 6}{3(2) - 4}$	
	4416	
	$=\frac{4.4+6}{6-4}$	
	22	
	$=\frac{22}{2}=11$	
	$= \frac{22}{2} = 11$	

	c. Memeriksa Kembali atau Membuat Kesimpulan	
	Jadi nilai dari $\lim_{t\to 2} \frac{4t^2+6}{3t-4}$ dengan cara substitusi adalah	6
	11.	
4	a. Memahami Masalah	7
	Diketahui:	
	$\lim_{x\to 2} \frac{\sqrt{x+7}-3}{x-2}$	
	Ditanya:	
	Dengan cara merasionalkan bentuk sekawan, berapa	
	nilai dari $\lim_{x \to 2} \frac{\sqrt{x+7}-3}{x-2}$?	
	b. Merencanakan Pemecahan dan Melaksanakan	7
	Pemecahannya sesuai Rencana	
	$\lim_{x \to 2} \frac{\sqrt{x+7}-3}{x-2} \times \frac{\sqrt{x+7}+3}{\sqrt{x+7}+3}$	
	$\lim_{x \to 2} \frac{(x+7)-9}{(x-2)(\sqrt{x+7}+3)}$	
	$\lim_{x \to 2} \frac{x - 2}{(x - 2)(\sqrt{x + 7} + 3)}$	
	$\lim_{x \to 2} \frac{1}{(\sqrt{x+7}+3)} = \frac{1}{(\sqrt{2+7}+3)} = \frac{1}{(\sqrt{9}+3)} = \frac{1}{(3+3)} = \frac{1}{6}$	
	c. Memeriksa Kembali atau Membuat Kesimpulan	6
	Jadi nilai dari $\lim_{x\to 2} \frac{\sqrt{x+7}-3}{x-2}$ dengan cara merasionalkan	
	bentuk sekawan adalah $\frac{1}{6}$.	
	6	
5	a. Memahami Masalah	7
	Diketahui:	
	$f(x) = \frac{5x^3 - 40}{x^2 - 4}$	
	$dan x \rightarrow 2$	
	Ditanya:	
	Berapakah nilai $f(x) = \frac{5x^3 - 40}{x^2 - 4}$ jika $x \to 2$?	
	b. Merencanakan Pemecahan dan Melaksanakan	
	Pemecahannya sesuai Rencana	
	$f(x) = \frac{5x^3 - 40}{x^2 - 4}$ jika $x \to 2$ sama dengan $\lim_{x \to 2} \frac{5x^3 - 40}{x^2 - 4}$	

sehingga:

sehingga:

$$\lim_{x \to 2} \frac{5x^3 - 40}{x^2 - 4} = \lim_{x \to 2} \frac{5(x^3 - 8)}{(x - 2)(x + 2)}$$

$$= \lim_{x \to 2} \frac{5(x - 2)(x^2 - 2x + 2^2)}{(x - 2)(x + 2)}$$

$$= \lim_{x \to 2} \frac{5(x^2 - 2x + 4)}{(x + 2)}$$

$$= \frac{5(2^2 + 2(2) + 4)}{2 + 2}$$

$$= \frac{5(4 + 4 + 4)}{4} = \frac{5(12)}{4} = \frac{60}{4} = 15$$
Memeriksa Kembali atau Membuat Kesi

c. Memeriksa Kembali atau Membuat Kesimpulan

Jadi nilai dari $f(x) = \frac{5x^3-40}{x^2-4}$ jika $x \to 2$ adalah 15.

6

7

SOAL TES KEMAMPUAN PENALARAN

- 1. Fungsi $f(x) = 2x^2 + 4x 5$, untuk setiap x bilangan real. Tunjukkan nilai f(x) jika x mendekati 0?
 - a. Identifikasikan apa yang diketahui, ditanya, dijawab serta rumus dari permasalahan diatas.
 - b. Nyatakanlah dalam bentuk model matematika permasalahan diatas.
 - c. Tuliskan kesimpulan hasil yang didapat dari permasalahan diatas.
- 2. Fungsi $f(x) = \begin{cases} x 1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2 2, & x \ge 2 \end{cases}$, tunjukkan bahwa nilai $\lim_{x \to 0} f(x)$ dan $\lim_{x \to 2} f(x)$

f(x) ada?

- a. Identifikasikan apa yang diketahui, ditanya, dijawab serta rumus dari permasalahan diatas
- b. Nyatakanlah dalam bentuk model matematika permasalahan diatas.
- c. Tuliskan kesimpulan hasil yang didapat dari permasalahan diatas.
- 3. Dengan cara substitusi, hitunglah nilai $\lim_{p\to 4} \frac{3p^2+6}{3p-3}$
 - a. Identifikasikan apa yang diketahui, ditanya, dijawab, serta rumus dari permasalahan diatas.
 - b. Nyatakanlah dalam bentuk model matematika permasalahan diatas.
 - c. Tuliskan kesimpulan hasil yang didapat dari permasalahan diatas.
- 4. Dengan cara pemfaktoran, selidiki nilai dari $\lim_{x \to -4} \frac{x^2 + 2x 8}{x + 4}$
 - a. Identifikasikan apa yang diketahui, ditanya, dijawab, serta rumus dari permasalahan diatas.
 - b. Nyatakanlah dalam bentuk model matematika
 - c. Tuliskan kesimpulan hasil yang didapat dari permasalahan diatas.
- 5. Pecahkan nilai $f(x) = \frac{x^4 4x^3 16}{x^3 8}$ jika $x \to 2$.

- a. Identifikasikan apa yang diketahui, ditanya, dijawab, serta rumus dari permasalahan diatas.
- b. Nyatakanlah dalam bentuk model matematika
- c. Tuliskan kesimpulan hasil yang didapat dari permasalahan diatas.

KUNCI JAWABAN TES KEMAMPUAN PENALARAN

Soal 1 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: Fungsi $f(x) = 2x^2 + 4x - 5$ Dimana x adalah bilangan real Ditanya: Berapa nilai $f(x)$ jika x mendekati 0 ? b. Melakukan Manipulasi atau Perhitungan Matematika $f(x) \text{ mendekati } 0 = \lim_{x \to 0} f(x)$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} 2x^2 + 4x - 5$ $= 2(0)^2 + 4(0) - 5$ $= -5$ c. Menarik Kesimpulan Jadi nilai dari $\lim_{x \to 0} 2x^2 + 4x - 5$ adalah -5. 6 2 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: $Fungsi f(x) = \begin{cases} x - 1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2 - 2, & x \ge 2 \end{cases}$ Ditanya: $Tunjukkan bahwa nilai \lim_{x \to 0} f(x) \text{ dan } \lim_{x \to 2} f(x) \text{ ada atau}$	Nomor	Kunci Jawaban	Skor
Memperkirakan Jawaban Diketahui: Fungsi $f(x) = 2x^2 + 4x - 5$ Dimana x adalah bilangan real Ditanya: Berapa nilai $f(x)$ jika x mendekati 0 ? b. Melakukan Manipulasi atau Perhitungan Matematika $f(x) \text{ mendekati } 0 = \lim_{x \to 0} f(x)$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} 2x^2 + 4x - 5$ $= 2(0)^2 + 4(0) - 5$ $= -5$ c. Menarik Kesimpulan Jadi nilai dari $\lim_{x \to 0} 2x^2 + 4x - 5$ adalah -5. 6 2 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: Fungsi $f(x) = \begin{cases} x - 1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2 - 2, & x \ge 2 \end{cases}$ Ditanya:	Soal		
Diketahui: Fungsi $f(x) = 2x^2 + 4x - 5$ Dimana x adalah bilangan real Ditanya: Berapa nilai $f(x)$ jika x mendekati 0 ? b. Melakukan Manipulasi atau Perhitungan Matematika $f(x) \text{ mendekati } 0 = \lim_{x \to 0} f(x)$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} 2x^2 + 4x - 5$ $= 2(0)^2 + 4(0) - 5$ $= -5$ c. Menarik Kesimpulan Jadi nilai dari $\lim_{x \to 0} 2x^2 + 4x - 5$ adalah -5. 6 2 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: $x - 1, x < 0$ Fungsi $f(x) = \begin{cases} 3x, 0 \le x < 2 \\ x^2 - 2, x \ge 2 \end{cases}$ Ditanya:	1	a. Membuat Model Matematika untuk	7
Fungsi $f(x) = 2x^2 + 4x - 5$ Dimana x adalah bilangan real Ditanya: Berapa nilai $f(x)$ jika x mendekati 0 ? b. Melakukan Manipulasi atau Perhitungan Matematika $f(x)$ mendekati $0 = \lim_{x \to 0} f(x)$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} 2x^2 + 4x - 5$ $= 2(0)^2 + 4(0) - 5$ $= -5$ c. Menarik Kesimpulan Jadi nilai dari $\lim_{x \to 0} 2x^2 + 4x - 5$ adalah -5. 6 2 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: $x - 1, x < 0$ Fungsi $f(x) = \begin{cases} x - 1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2 - 2, & x \ge 2 \end{cases}$ Ditanya:		Memperkirakan Jawaban	
Dimana x adalah bilangan real Ditanya: Berapa nilai $f(x)$ jika x mendekati 0 ? b. Melakukan Manipulasi atau Perhitungan Matematika $f(x) \text{ mendekati } 0 = \lim_{x \to 0} f(x)$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} 2x^2 + 4x - 5$ $= 2(0)^2 + 4(0) - 5$ $= -5$ c. Menarik Kesimpulan Jadi nilai dari $\lim_{x \to 0} 2x^2 + 4x - 5$ adalah -5. 6 2 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: $Fungsi f(x) = \begin{cases} x - 1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2 - 2, & x \ge 2 \end{cases}$ Ditanya:		Diketahui:	
Ditanya: Berapa nilai $f(x)$ jika x mendekati 0 ? b. Melakukan Manipulasi atau Perhitungan Matematika $f(x) \text{ mendekati } 0 = \lim_{x \to 0} f(x)$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} 2x^2 + 4x - 5$ $= 2(0)^2 + 4(0) - 5$ $= -5$ c. Menarik Kesimpulan Jadi nilai dari $\lim_{x \to 0} 2x^2 + 4x - 5$ adalah -5. 6 2 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: $Fungsi f(x) = \begin{cases} x - 1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2 - 2, & x \ge 2 \end{cases}$ Ditanya:		Fungsi $f(x) = 2x^2 + 4x - 5$	
Berapa nilai $f(x)$ jika x mendekati 0 ? b. Melakukan Manipulasi atau Perhitungan Matematika $f(x) \text{ mendekati } 0 = \lim_{x \to 0} f(x)$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} 2x^2 + 4x - 5$ $= 2(0)^2 + 4(0) - 5$ $= -5$ c. Menarik Kesimpulan Jadi nilai dari $\lim_{x \to 0} 2x^2 + 4x - 5$ adalah -5. 6 2 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: $Fungsi f(x) = \begin{cases} x - 1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2 - 2, & x \ge 2 \end{cases}$ Ditanya:		Dimana x adalah bilangan real	
b. Melakukan Manipulasi atau Perhitungan Matematika $f(x) \text{ mendekati } 0 = \lim_{x \to 0} f(x)$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} 2x^2 + 4x - 5$ $= 2(0)^2 + 4(0) - 5$ $= -5$ c. Menarik Kesimpulan $\text{Jadi nilai dari } \lim_{x \to 0} 2x^2 + 4x - 5 \text{ adalah } -5.$ 6 2 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: $Fungsi \ f(x) = \begin{cases} x - 1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2 - 2, & x \ge 2 \end{cases}$ Ditanya:		Ditanya:	
Matematika $f(x) \text{ mendekati } 0 = \lim_{x \to 0} f(x)$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} 2x^2 + 4x - 5$ $= 2(0)^2 + 4(0) - 5$ $= -5$ c. Menarik Kesimpulan $\text{Jadi nilai dari } \lim_{x \to 0} 2x^2 + 4x - 5 \text{ adalah } -5.$ 6 $2 \text{a. Membuat} \text{Model} \text{Matematika} \text{untuk} \text{Memperkirakan Jawaban} \text{Diketahui:} \text{Fungsi } f(x) = \begin{cases} x - 1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2 - 2, & x \ge 2 \end{cases}$ Ditanya:		Berapa nilai f(x) jika x mendekati 0 ?	
Matematika $f(x) \text{ mendekati } 0 = \lim_{x \to 0} f(x)$ $\lim_{x \to 0} f(x) = \lim_{x \to 0} 2x^2 + 4x - 5$ $= 2(0)^2 + 4(0) - 5$ $= -5$ c. Menarik Kesimpulan $\text{Jadi nilai dari } \lim_{x \to 0} 2x^2 + 4x - 5 \text{ adalah } -5.$ $\text{Memperkirakan Jawaban}$ Diketahui: $\text{Fungsi } f(x) = \begin{cases} x - 1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2 - 2, & x \ge 2 \end{cases}$ Ditanya:		b. Melakukan Manipulasi atau Perhitungan	7
$\lim_{x\to 0} f(x) = \lim_{x\to 0} 2x^2 + 4x - 5$ $= 2(0)^2 + 4(0) - 5$ $= -5$ c. Menarik Kesimpulan Jadi nilai dari $\lim_{x\to 0} 2x^2 + 4x - 5$ adalah -5. 6 2 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: $Fungsi f(x) = \begin{cases} x-1, & x<0 \\ 3x, & 0 \le x < 2 \\ x^2-2, & x \ge 2 \end{cases}$ Ditanya:		Matematika	,
$= 2(0)^{2} + 4(0) - 5$ $= -5$ c. Menarik Kesimpulan Jadi nilai dari $\lim_{x \to 0} 2x^{2} + 4x - 5$ adalah -5. 2 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: $Fungsi f(x) = \begin{cases} x - 1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^{2} - 2, & x \ge 2 \end{cases}$ Ditanya:		$f(x)$ mendekati $0 = \lim_{x \to 0} f(x)$	
c. Menarik Kesimpulan Jadi nilai dari $\lim_{x\to 0} 2x^2 + 4x - 5$ adalah -5. 2 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: $Fungsi \ f(x) = \begin{cases} x-1, & x<0 \\ 3x, & 0 \le x < 2 \\ x^2-2, & x \ge 2 \end{cases}$ Ditanya:			
c. Menarik Kesimpulan Jadi nilai dari $\lim_{x\to 0} 2x^2 + 4x - 5$ adalah -5. 2 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: Fungsi $f(x) = \begin{cases} x-1, & x<0 \\ 3x, & 0 \le x < 2 \\ x^2-2, & x \ge 2 \end{cases}$ Ditanya:		$= 2(0)^2 + 4(0) - 5$	
Jadi nilai dari $\lim_{x\to 0} 2x^2 + 4x - 5$ adalah -5. 2 a. Membuat Model Matematika untuk Memperkirakan Jawaban Diketahui: $Fungsi \ f(x) = \begin{cases} x-1, & x<0 \\ 3x, & 0 \le x < 2 \\ x^2-2, & x \ge 2 \end{cases}$ Ditanya:		= -5	
Jadi nilai dari $\lim_{x\to 0} 2x^2 + 4x - 5$ adalah -5. 2 a. Membuat Model Matematika untuk 7 Memperkirakan Jawaban Diketahui: $\begin{cases} x-1, & x<0 \\ 3x, & 0 \le x < 2 \\ x^2-2, & x \ge 2 \end{cases}$ Ditanya:		_	6
Memperkirakan Jawaban Diketahui: Fungsi $f(x) = \begin{cases} x-1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2-2, & x \ge 2 \end{cases}$ Ditanya:		Jadi nilai dari $\lim_{x\to 0} 2x^2 + 4x - 5$ adalah -5.	U
Memperkirakan Jawaban Diketahui: Fungsi $f(x) = \begin{cases} x-1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2-2, & x \ge 2 \end{cases}$ Ditanya:			
Diketahui: Fungsi $f(x) = \begin{cases} x - 1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2 - 2, & x \ge 2 \end{cases}$ Ditanya:	2	a. Membuat Model Matematika untuk	7
Fungsi $f(x) = \begin{cases} x - 1, & x < 0 \\ 3x, & 0 \le x < 2 \\ x^2 - 2, & x \ge 2 \end{cases}$ Ditanya:		Memperkirakan Jawaban	
Fungsi $f(x) = \begin{cases} 3x, & 0 \le x < 2 \\ x^2 - 2, & x \ge 2 \end{cases}$ Ditanya:		Diketahui:	
Ditanya:		(x-1, x<0	
Ditanya:		Fungsi $f(x) = \begin{cases} 3x, & 0 \le x < 2 \\ x^2 & 2 \end{cases}$	
$r_{\rightarrow 0}$ $r_{\rightarrow 2}$ $r_{\rightarrow 2}$			
tidak?			
		· · · · · · · · · · · · · · · · · · ·	
b. Melakukan Manipulasi atau Perhitungan		b. Melakukan Manipulasi atau Perhitungan	
Matematika		Matematika	
Syarat: 7		Syarat:	7
$\lim_{x \to a} f(x) \text{ dikatakan ada jika:}$			

	$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) \text{[sisi kanan = sisi kiri]}$	
	• $\lim_{x \to 0} f(x)$ ada jika $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x)$	
	Karena: $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$	
	$\lim_{x \to 0^{-}} (x-1) = \lim_{x \to 0^{+}} 3x$	
	0-1 = 3(0) $-1 \neq 0$	
	Maka $\lim_{x\to 0} f(x)$ tidak ada.	
	• $\lim_{x \to 2} f(x) \text{ ada jika } \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x)$	
	Karena: $\lim_{x \to 0} f(x) = \lim_{x \to 0} f(x)$	
	$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x)$ $\lim_{x \to 2^{-}} 3x = \lim_{x \to 2^{+}} x^{2} - 4$	
	$3(2) = 2^{2} - 2$	
	$6 \neq 2$ Maka lim f(x) tidak ada.	
	$x \rightarrow 2$	
	c. Menarik Kesimpulan	
	Jadi berdasarkan perhitungan diatas, maka nilai $\lim_{x\to 0}$ $f(x)$ tidak ada dan nilai $\lim_{x\to 2}$ $f(x)$ juga tidak ada.	6
3	a. Membuat Model Matematika untuk	7
	Memperkirakan Jawaban Diketahui:	
	$\lim_{p \to 4} \frac{3p^2 + 6}{3p - 3}$	
	$p \rightarrow 4$ $3p-3$ Ditanya:	
	Dengan cara <u>substitusi</u> , berapa nilai dari $\lim_{p\to 4}$?	
	b. Melakukan Manipulasi atau Perhitungan	
	Matematika $\lim_{n \to \infty} \frac{3p^2 + 6}{n} = \frac{3(4)^2 + 6}{n}$	7
	$\lim_{p \to 4} \frac{3p^2 + 6}{3p - 3} = \frac{3(4)^2 + 6}{3(4) - 3}$	

	21616	
	$=\frac{3.16+6}{12-3}$	
	$=\frac{54}{9}=6$	
	c. Menarik Kesimpulan $3p^2 + 6$	6
	Jadi nilai dari $\lim_{p\to 4} \frac{3p^2+6}{3p-3}$ dengan cara substitusi adalah	
	6.	
4	a. Membuat Model Matematika untuk	7
	Memperkirakan Jawaban	
	Diketahui:	
	$\lim_{x \to -4} \frac{x^2 + 2x - 8}{x + 4}$	
	$\begin{array}{ccc} & & & & \\ x \rightarrow -4 & & x+4 \end{array}$	
	Ditanya:	
	Dengan cara pemfaktoran, berapa nilai dari $\lim_{x\to -4}$	
	$\frac{x^2+2x-8}{x+4}$?	
	x+4 ·	
	b. Melakukan Manipulasi atau Perhitungan	7
	Matematika	
	$\lim_{x \to -4} \frac{x^2 + 2x - 8}{x + 4}$	
	$\lim_{x \to -4} \frac{(x-2)(x+4)}{x+4}$	
	$\lim_{x \to -4} x - 2$	
	-4-2=-6	
	c. Menarik Kesimpulan	6
	Jadi nilai dari $\lim_{x \to -4} \frac{x^2 + 2x - 8}{x + 4}$ dengan cara pemfaktoran	U
	$x \rightarrow -4 \qquad x+4$ adalah -6.	
5	a. Membuat Model Matematika untuk	7
	Memperkirakan Jawaban	
	Diketahui:	

$$f(x) = \frac{x^4 - 4x^3 - 16}{x^3 - 8}$$
dan x \to 2

Ditanya:

Berapakah nilai $f(x) = \frac{x^4 - 4x^3 - 16}{x^3 - 8}$ jika $x \to 2$?

b. Melakukan Manipulasi atau Perhitungan Matematika

$$f(x) = \frac{x^4 - 4x^3 - 16}{x^3 - 8} \text{ jika } x \to 2 \text{ sama dengan}$$

$$\lim_{x \to 2} \frac{x^4 - 4x^3 - 16}{x^3 - 8}$$

$$\lim_{x \to 2} \frac{x^4 - 4x^3 - 16}{x^3 - 8} = \lim_{x \to 2} \frac{4x^3 - 12x^2}{3x^2}$$
$$= \frac{4(2)^3 - 12(2)^2}{3(2)^2}$$

$$=\frac{4.8-12.4}{3.4}$$

$$=\frac{32-48}{12}=\frac{-16}{12}=\frac{-4}{3}$$

c. Menarik Kesimpulan

Jadi nilai dari $f(x) = \frac{x^4 - 4x^3 - 16}{x^3 - 8}$ jika $x \to 2$ adalah $\frac{-4}{3}$.

6

7

DATA HASIL KELAS EKSPERIMEN I

Data Hasil Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Numbered Head Together* (sebagai Kelas Eksperimen I)

	N T	1	Skor		Kategori Penilaian				
No	Nama	KPM	KP	KPM	KP				
1	Ahmad Raihan	87	93	Baik	Sangat Baik				
2	Alicia Zahra	75	75	Baik	Baik				
3	Arya Akbar	69	57	Cukup	Kurang				
4	Audia Syifa	57	46	Kurang	Kurang				
5	Chantika Desti	93	80	Sangat Baik	Baik				
6	Clarisa Yolanda	73	75	Cukup	Baik				
7	Diah Ayu Lestari	73	49	Cukup	Kurang				
8	Ebenezer. E	87	60	Baik	Kurang				
9	Fadri Nusantara	87	40	Baik	Sangat Kurang				
10	Fanny Faujannah	69	75	Cukup	Baik				
11	Hafiz Wiryamanta	69	49	Cukup	Kurang				
12	Intan Gusnita	57	42	Kurang	Sangat Kurang				
13	M. Idris Sanjaya	70	69	Cukup	Cukup				
14	M. Rizky Fauzan	87	69	Baik	Cukup				
15	M. Aditya Wijaya	69	69	Cukup	Cukup				
16	Mutia Safira	75	93	Baik	Sangat Baik				
17	Nobella Ayu	70	69	Cukup	Cukup				
18	Nadia Salsabila	70	75	Cukup	Baik				
19	Natalie Putri	57	45	Kurang	Kurang				
20	Nindy	87	75	Baik	Baik				
21	Nursyatika	44	69	Sangat Kurang	Cukup				
22	Philifi Tiberias	87	93	Baik	Sangat Baik				
23	Putri Wilandy	57	40	Kurang	Sangat Kurang				
24	Raihani	44	40	Sangat Kurang	Sangat Kurang				
25	Rangga Ananda P	57	42	Kurang	Sangat Kurang				
26	Rizky Andini	90	49	Sangat Baik	Kurang				
27	Sarlia Ulfa	87	77	Baik	Baik				
28	Theresia Jose	90	75	Sangat Baik	Baik				
29	Verawati Siahaan	60	57	Kurang	Kurang				
30	Vina Fauziah	69	80	Cukup	Baik				
31	Yaosin Geovani	60	57	Kurang	Kurang				
32	Yudha Ramadhana	44	77	Sangat Kurang	Baik				
33	Zafarel Heisya	61	46	Kurang	Kurang				
34	Zafira Alya	87	42	Baik	Sangat Kurang				

35	Shayla Octaviana	90	42	Sangat Baik	Sangat Kurang
36	Javier	87	73	Baik	Cukup
	Jumlah	2595	2264		
	Mean	72.08333333	62.88888889		
	St. Dev	14.54132044	16.70889887		
	Var	211.45	279.1873016		

DATA HASIL KELAS EKSPERIMEN II

Data Hasil Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran *Two Stay-Two Stray*

(sebagai Kelas Eksperimen II)

NT.	NT	Tota	l Skor	Kategori	Kategori Penilaian				
No	Nama	KPM	KP	KPM	KP				
1	Afifa Nazwabila	89	77	Baik	Baik				
2	Amanda Salsabila	89	58	Baik	Kurang				
3	Amelia Putri Daulay	97	95	Sangat Baik	Sangat Baik				
4	Annisa Putri	73	75	Cukup	Baik				
5	Ayu Triana	75	80	Baik	Baik				
6	Cherly Mersilly	75	80	Baik	Baik				
7	Cyndi Syahrani	75	75	Baik	Baik				
8	Deffi Sintya	89	58	Baik	Kurang				
9	Dira Tazkyah	100	100	Sangat Baik	Sangat Baik				
10	Diva Alfia	58	53	Kurang	Kurang				
11	Firly Aulia	75	80	Baik	Baik				
12	Fredy Rinalfin	58	89	Kurang	Baik				
13	Hafiza Ilma	89	95	Baik	Sangat Baik				
14	Irgi	97	53	Sangat Baik	Kurang				
15	Khadafi Dwi	64	68	Kurang	Cukup				
16	Lutfiah Ananda	90	80	Sangat Baik	Baik				
17	Luthfiya Fadhila	75	89	Baik	Baik				
18	M. Faiz Ramadhan	100	100	Sangat Baik	Sangat Baik				
19	M. Hanif	90	53	Sangat Baik	Kurang				
20	M. Zaynuri	100	68	Sangat Baik	Cukup				
21	Marina	73	65	Cukup	Cukup				
22	Meysa Malika	97	68	Sangat Baik	Cukup				
23	Muhammad Ihza	90	53	Sangat Baik	Kurang				
24	Nur Aisyah Tanjung	100	89	Sangat Baik	Baik				
25	Raina Meuthia	75	89	Baik	Baik				
26	Rista Salsadila Sari	75	68	Baik	Cukup				
27	Roni Arya Putra	90	71	Sangat Baik	Cukup				
28	Rons	100	77	Sangat Baik	Baik				
29	Sadrina Widya	100	95	Sangat Baik	Sangat Baik				
30	Sahrul	100	89	Sangat Baik	Baik				
31	Sausan Sabila	95	65	Sangat Baik	Cukup				
32	Siti Mawaddah Hsb	95	89	Sangat Baik	Baik				
33	Sonya Aulia P	100	89	Sangat Baik	Baik				
34	Trywijaya	64	65	Kurang	Cukup				

35	Wan Febryansyah	58	53	Kurang	Kurang				
36	Windi Amanda	75	71	Baik	Cukup				
	Jumlah	3045	2722						
	Mean	84.58333333	75.61111111						
	St. Dev	13.88395785	14.5823333						
	Var	192.7642857	212.6444444						

LAMPIRAN 9
KISI-KISI KEMAMPUAN PEMECAHAN MASALAH MATEMATIS

Langkah Pemecahan	Indikator yang Diukur	Bentuk
Masalah		Soal
Matematika		
Memahami masalah	3. Menuliskan yang diketahui4. Menuliskan cukup, kurang, atau berlebihan hal-hal yang diketahui	
Merencanakan pemecahannya	Menuliskan cara yang digunakan dalam pemecahan soal	
Pemecahan masalah sesuai rencana	2. Melakukan perhitungan, diukur dengan melaksanakan rencana yang sudah dibuat serta membuktikan bahwa langkah yang dipilih benar	Uraian
Memeriksa kembali prosedur dan hasil penyelesaiannya	Melakukan salah satu kegiatan berikut: 3. Memeriksa penyelesaian (mengetes atau menguji coba jawaban). 4. Memeriksa jawaban yang kurang lengkap atau kurang jelas.	

KISI-KISI KEMAMPUAN PENALARAN MATEMATIS

Langkah Penalaran Matematis	Indikator yang Diukur	Bentuk Soal
Membuat generalisasi untuk memperkirakan jawaban	Mengidentifikasi soal yang diberikan	
Melakukan manipulasi matematika	Membuat model matematika	
Menggunakan pola dan hubungan	Menyelesaikan permasalahan sesuai dengan yang diminta.	Uraian
Menarik kesimpulan	Menulis kesimpulan yang didapat.	

LAMPIRAN 11 PEDOMAN PENSKORAN KEMAMPUAN PEMECAHAN MASALAH

No	Aspek Pemecahan Masalah	Skor	Keterangan
1	Memahami masalah (menuliskan unsur diketahui	1	Hanya memaparkan 1 dari 4 komponen dalam menjawab.
	dan ditanya)	3	Memaparkan 2 dari 4 komponen dalam menjawab soal.
		5	Memaparkan 3 dari 4 komponen dalam menjawab soal.
		7	Memaparkan 4 komponen dalam menjawab soal yaitu yang diketahui, ditanya dan dijawab, serta rumus.
2	Menyusun rencana penyelesaian (menuliskan	1	Tidak menuliskan rumus sama sekali
	rumus)	3	Menuliskan rumus penyelesaian masalah namun tidak sesuai permintaan soal
		5	Menuliskan setengah rumus penyelesaian sesuai permintaan soal
		7	Menuliskan rumus penyelesaian masalah sesuai permintaan soal
3	Melaksanakan rencana		
	penyelesaian (bentuk penyelesaian)	1	Bentuk penyelesaian singkat, namun salah
		3	Bentuk penyelesaian panjang namun salah
		5	Bentuk penyelesaian singkat

			benar
		7	Bentuk penyelesaian panjang benar
4	Memeriksa kembali proses dan hasil (menuliskan kembali kesimpulan jawaban)	1	Tidak ada kesimpulan sama sekali
	Resimpulari jawasani	3	Menuliskan kesimpulan namun tidak sesuai dengan konteks masalah
		5	Menuliskan kesimpulan namun tidak lengkap dengan konteks masalah
		7	Menuliskan kesimpulan sesuai dengan konteks masalah dengan benar.

LAMPIRAN 12
PEDOMAN PENSKORAN KEMAMPUAN PENALARAN MATEMATIS

Indikator Penalaran Matematis	7	5	3	1
Membuat generalisasi (model matematika) untuk memperkirakan jawaban	Memaparkan 4 komponen dalam menjawab soal yaitu yang diketahui, ditanya dan dijawab, serta rumus.	Memaparkan 3 dari 4 komponen dalam menjawab soal.	Memaparkan 2 dari 4 komponen dalam menjawab soal.	Hanya memaparkan 1 dari 4 komponen dalam menjawab.
Melakukan manipulasi matematika	Panjang dan benar.	Singkat dan benar.	Panjang dan salah.	Singkat dan salah.
Menarik kesimpulan	Menuliskan kesimpulan sesuai dengan konteks masalah dengan benar.	Menuliskan kesimpulan namun tidak lengkap dengan konteks masalah	Menuliskan kesimpulan namun tidak sesuai dengan konteks masalah	Tidak ada kesimpulan sama sekali

ANALISIS INSTRUMEN

~	-	26896	25281	24649	23716	21904	17424	16641	15876	15876	15876	15876	15876	15876	15876	15876	15876	14400	14161	13924	13924	13689	12996	12996	12996	12996	12996	12996	12996	12769	12769	12769	12769	12544	12544	12321	9604
ŀ	i) Lie l	164	159	157	154	148	132	129	971	126	126	126	971	126	126	126	971	120	413	118	118	117	114	114	114	114	114	114	114	113	#3	113	113	112	112	III.	88
		8	₽	₽	Q.	₽	9	10	7	10	10	14	10	8	10	Q.	7	10	9	7	8	10	7	7	5	8	8	8	8	7	9	7	8	7	5	12	۲-
	4	은 유	F	8	<u>"</u>		P		10	14	8		8	7	 e		7		ξ	9	7		Q.		15	Б	15		7	7	=	~	ω	m	7	8	2
	೮	12	유	유	유		유	유	8	12	£	8	10	8	6		8	-	7	8	7	£	7	7	8	00	7	9	2	8	9		8	6	9	8	12
	12		۲-		12	12	6	4	8	4	8	2	4	S	7	2	7	D.	7		£	2	7	12	2	6	2	7	S	8	4	12	F	e	‡	4	2
	F	4	무	무		무		6	Q.	8	7	Q.	13	17	7	무	7	유		9	8	8	7	7	8	7	7	15	7	12	~	r~	7		9	12	~
	유	유	<u></u>		유		6	£	9	9	10	6	8	9	6	-	8	유			10	8	10	7	8	12	7	4		7	9			ħ	9	8	12
	6		ħ	무	6		6	8	9	2	2	4	10	8	4	~	17	6	12		3	9	2	9	2	2	4	4	9	4	F	2	4	e	7	2	4
NO. ITEM		δ	12	<u> </u>		2		2	2	4	7	8	3	2	4		7	4	7	7	0	2	7	6	4	6	2	12	5	7	6	6	3	4	9		2
Š																			_														12				_
	_								2	-	4	4													9		6		ε			4	7	9		2	_
	9	유	₽ 	(유 		유		6	1 1	7	12		10	12			ъ 			12		2	7		9 :	7	유		7						4	: :	
	2	0	12	6	ω	~	유	-	10	8	8	6	01	8	유	~	#	ω	-	2	6	2	12	7	8	S	7	9	12	7	9	9	9	ξ	15	9	9
	4	4	우	ħ	φ	우	유	17	8	4	유	00	유	유	00	r~	۲-	r~	~	9	우	ħ	7	-	8	우	7	12	ω	9	ω	12	ω	ω	2	8	12
	<u>س</u>	~	~	₽	~	ω	S	9	2	4	7	2	9	2	2	~	7	12	9	9	4	2	9	9	3	9	6	2	ω	12	2	S	12	12	က	4	m
	2	₽	8	12	₽	ω	₽	œ	유	₽	₽	₽	8	₽	ω	22	9	۲-	ω	8	₽	ħ	8	00	ţ.	S	7	9	۲-	8	۲-	ω	۲-	ß	ħ	9	~
	-	ħ		₽	6	4		₽	10	7	4	9	8	80	6	6	7	ω	9	\$	6	9	8	6	10	6	7	9	œ	9	12		6	~	9	15	۲-
	Nomor nesponden	-	2	e	4	2	9	7	8	6	10	#	-12	13	14	ŧ	16	17	\$	13	20	21	22	23	24	22	28	27	28	23	88	34	32	33	34	32	88
9	2	-	7	m	4	r.	9	7	00	6	유	F	12	ಭ	4	ħ	9	4	æ	ę	20	77	22	23	54	52	56	27	28	53	8	ਲ	32	ဗ္ဂ	34	32	8

PEDOMAN VALIDITAS ISI

FORMAT PENELAAHAN BUTIR SOAL BENTUK URAIAN

Mata Pelajaran : Matematika Wajib

Kelas/ Semester : XI IPA/Genap

Ahli/Penelaah :

Petunjuk pengisian format penelaahan butir soal bentuk uraian:

1. Analisislah setiap butir soal berdasarkan semua kriteria yang tertera dalam format

- 2. Berilah tanda cek ($\sqrt{\ }$) pada salah satu kolom untuk melihat relevan antara indikator dengan butir soal
- 3. Berilah keterangan pada kolom apabila tidak adanya relevan antara indikator dengan butir soal.

			Krite	eria		
No	Aspek yang Ditelaah	1	2	3	4	Votomongon
		TR	CR	R	SR	Keterangan
1	MATERI					
	a. Soal sesuai dengan					
	indikator (menuntut					
	tes tertulis untuk					
	menentukan					
	jawaban dalam					
	bentuk uraian)					
	b. Batasan pertanyaan					
	dan jawaban yang					
	diharapkan sudah					
	sesuai					
	c. Materi yang					
	ditanyakan sesuai					
	kompetensi					
	d. Isi materi yang					
	ditanyakan sesuai					
	dengaan jenjang					
	dan jenis sekolah					
	atau tingkat kelas					
2	ISI					

				1	
	a.	Menggunakan kata			
		tanya atau perintah			
		yang menuntun			
		jawaban uraian			
	b.	Ada petunjuk yang			
		jelas mengenai			
		pengerjaan soal			
	c.	Ada pedoman			
		penskoram			
	d.	Tabel, grafik,			
		gambar, peta atau			
		sejenisnya			
		disajikan dengan			
		jelas dan terbaca			
3	BAHA	ASA			
	a.	Rumusan kalimat			
		soal komunikatif			
	b.	Butir soal			
		menggunakan			
		Ejaan Bahasa			
		Indonesia			
	c.	Tidak			
		menggunakan			
		ungkapan yang			
		menimbulkan			
		penafsiran salah			
		pengertian			
	d.	Tidak			
		menggunakan			
		bahasa yang			
		berlaku			
		setempat/baku			
	e.	Rumusan soal tidak			
		mengandung			
		kata/kalimat yang			
		menyinggung			
		perasaan siswa.			

Keterangan:

TR : Tidak Relevan

CR : Cukup Relevan

R : Relevan

SR : Sangat Relevan

Medan, Maret 2020

Diketahui

Validator

UJI NORMALITAS

A. Uji Normalitas A1B1 (KPM Kelas Eksperimen I)

No	Xi	F	FKum	Zi	F(Zi)	S(Zi)	F(Zi)-S(Zi)
1	44	3	3	-1.77934	0.037592	0.083333	0.045741645
2	57	5	8	-0.91681	0.17962	0.22222	0.042602309
3	60	2	10	-0.71777	0.23645	0.277778	0.041328
4	61	1	11	-0.65142	0.257387	0.305556	0.048168133
5	69	5	16	-0.12063	0.451991	0.44444	0.007546225
6	70	3	19	-0.05429	0.478354	0.527778	0.049423756
7	73	2	21	0.14476	0.55755	0.583333	0.02578344
8	75	2	23	0.277457	0.609285	0.638889	0.029603485
9	87	9	32	1.073638	0.858508	0.888889	0.030381348
10	90	3	35	1.272683	0.898435	0.972222	0.073787435
11	93	1	36	1.471729	0.929453	1	0.070547088
Jumlah	779	36				L-Hitung	0.073787435
rata-rata	70.81818					L-Tabel	0.147666667
SD	15.07195						

Kesimpulan : Lhit < Ltab 0.07379 < 0.147667

diterima

Kesimpulan:

Oleh karena L hitung < L tabel, maka data hasil skor tes **Kemampuan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran** *Numbered Head Together* (A1B1) dinyatakan berdistribusi **normal.**

B. Uji Normalitas A2B1 (KPM Kelas Eksperimen II)

No	Xi	F	F Kum	Zi	F(Zi)	S(Zi)	F(Zi)-S(Zi)
1	58	3	3	-1.59584	0.055262	0.083333	0.028071393
2	64	2	5	-1.20235	0.114614	0.138889	0.024274403
3	73	2	7	-0.6121	0.270234	0.194444	0.075789994
4	75	8	15	-0.48094	0.31528	0.416667	0.101386721
5	89	4	19	0.437217	0.669023	0.527778	0.141245312
6	90	4	23	0.5028	0.692447	0.638889	0.053558597
7	95	2	25	0.830713	0.796932	0.694444	0.102487588

8	97	3	28	0.961878	0.831945	0.777778	0.05416675
9	100	8	36	1.158626	0.876696	1	0.123304406
Jumlah	741	36				L-Hitung	0.141245312
rata-			_				
rata	82.33333					L-Tabel	0.147666667
SD	15.24795						

Kesimpulan:

Lhit < Ltab 0.14125 <

0.147667

diterima

Kesimpulan:

Oleh karena L hitung < L tabel, maka data hasil skor tes **Kemampuan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran** *Two Stay-Two Stray* (A2B1) dinyatakan berdistribusi normal.

C. Uji Normalitas A1B2 (KP Kelas Eksperimen I)

No	Xi	F	F Kum	Zi	F(Zi)	S(Zi)	F(Zi)-S(Zi)
1	40	3	3	-1.29263	0.09807	0.083333	0.014736614
2	42	4	7	-1.17512	0.119974	0.194444	0.074470287
3	45	1	8	-0.99885	0.158934	0.22222	0.0632882
4	46	2	10	-0.94009	0.173585	0.277778	0.104192794
5	49	3	13	-0.76383	0.222486	0.361111	0.13862546
6	57	3	16	-0.29378	0.384463	0.444444	0.059981052
7	60	1	17	-0.11751	0.453227	0.472222	0.018994896
8	69	5	22	0.411291	0.65957	0.611111	0.048459157
9	73	1	23	0.646314	0.740962	0.638889	0.102073033
10	75	6	29	0.763825	0.777514	0.805556	0.028041207
11	77	2	31	0.881337	0.810932	0.861111	0.050178836
12	80	2	33	1.057604	0.854882	0.916667	0.061784587
13	93	3	36	1.82143	0.965729	1	0.034270776
Jumlah	806	36				L-Hitung	0.13862546
rata-			-				
rata	62					L-Tabel	0.147666667
SD	17.0196						

Kesimpulan : Lhit < Ltab

0.13863 < 0.147667

diterima

Kesimpulan:

Oleh karena L hitung < L tabel, maka data hasil skor tes **Kemampuan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran** *Numbered Head Together* (A1B2) dinyatakan berdistribusi **normal.**

D. Uji Normalitas A2B2 (KP Kelas Eksperimen II)

No	Xi	F	F Kum	Zi	F(Zi)	S(Zi)	F(Zi)-S(Zi)
1	53	5	5	-1.52532	0.06359	0.138889	0.075298982
2	58	2	7	-1.18704	0.117606	0.194444	0.076838876
3	65	3	10	-0.71346	0.237782	0.277778	0.039995705
4	68	4	14	-0.51049	0.304854	0.388889	0.084034596
5	71	2	16	-0.30752	0.379222	0.44444	0.065222082
6	75	2	18	-0.0369	0.485281	0.5	0.014718768
7	77	2	20	0.098408	0.539196	0.55556	0.016359872
8	80	4	24	0.301373	0.618435	0.666667	0.048231591
9	89	7	31	0.91027	0.81866	0.861111	0.042451077
10	95	3	34	1.316202	0.905947	0.944444	0.038497608
11	100	2	36	1.654478	0.950985	1	0.049015221
Jumlah	831	36				L-Hitung	0.084034596
rata-			•				
rata	75.54545					L-Tabel	0.147666667
SD	14.78082						

Kesimpulan : Lhit < Ltab

0.08403 < 0.147667

diterima

Kesimpulan:

Oleh karena L hitung < L tabel, maka data hasil skor tes **Kemampuan**

Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran

Two Stay-Two Stray (A2B2) dinyatakan berdistribusi normal.

E. Uji Normalitas A1 (KPM dan KP Kelas Eksperimen I)

No	Xi	F	F Kum	Zi	F(Zi)	S(Zi)	F(Zi)-S(Zi)
1	40	3	3	-1.39453	0.081578	0.0416667	0.039911623
2	42	4	7	-1.27991	0.100288	0.0972222	0.003065425
3	44	3	10	-1.1653	0.12195	0.1388889	0.016939101
4	45	1	11	-1.10799	0.133934	0.1527778	0.018843733
5	46	2	13	-1.05068	0.146704	0.1805556	0.033851816
6	49	3	16	-0.87875	0.189769	0.222222	0.032453014
7	57	8	24	-0.42027	0.337144	0.3333333	0.00381065

8	60	3	27	-0.24834	0.401935	0.375	0.026935069
9	61	1	28	-0.19103	0.42425	0.388889	0.035361381
10	69	10	38	0.267445	0.605437	0.5277778	0.077658855
11	70	3	41	0.324754	0.627317	0.5694444	0.057872062
12	73	3	44	0.496683	0.690294	0.6111111	0.079182633
13	75	8	52	0.611302	0.7295	0.7222222	0.007278053
14	77	2	54	0.725922	0.766057	0.75	0.016056557
15	80	2	56	0.89785	0.815367	0.7777778	0.037589539
16	87	9	65	1.299017	0.903031	0.9027778	0.000253252
17	90	3	68	1.470946	0.929347	0.944444	0.015097274
18	93	4	72	1.642875	0.949796	1	0.050204398
Jumlah	1158	72				L-Hitung	0.079182633
rata-rata	64.3333333		-			L-Tabel	0.104416101
SD	17.4490856				·		

Kesimpulan : Lhit < Ltab 0.07918 < 0.104416

diterima

Kesimpulan:

Oleh karena L hitung < L tabel, maka data hasil skor tes **Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran** *Numbered Head Together* (A1)

dinyatakan berdistribusi **normal.**

F. Uji Normalitas A2 (KPM dan KP Kelas Eksperimen II)

No	Xi	F	F Kum	Zi	F(Zi)	S(Zi)	F(Zi)-S(Zi)
1	53	5	5	-1.65	0.049472	0.069444	0.019972506
2	58	5	10	-1.30625	0.095734	0.138889	0.043154492
3	64	2	12	-0.89375	0.185729	0.166667	0.019061834
4	65	3	15	-0.825	0.204686	0.208333	0.003646885
5	68	4	19	-0.61875	0.268041	0.263889	0.004152213
6	71	2	21	-0.4125	0.339987	0.291667	0.048320245
7	73	2	23	-0.275	0.391658	0.319444	0.072213969
8	75	10	33	-0.1375	0.445318	0.458333	0.013015385
9	77	2	35	0	0.5	0.486111	0.013888889
10	80	4	39	0.206249	0.581702	0.541667	0.040035292
11	89	11	50	0.824998	0.795314	0.694444	0.100869107
12	90	4	54	0.893748	0.814271	0.75	0.064271499
13	95	5	59	1.237497	0.892049	0.819444	0.072604158

14	97	3	62	1.374996	0.915434	0.861111	0.054322572
15	100	10	72	1.581246	0.943089	1	0.056910948
Jumlah	1155	72				L-Hitung	0.100869107
rata-			•				
rata	77					L-Tabel	0.104416101
SD	14.5455						

Lhit < Ltab 0.10087 < diterima

Kesimpulan:

Oleh karena L hitung < L tabel, maka data hasil skor tes **Kemampuan Pemecahan Masalah dan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran** *Two Stay-Two Stray* (A2) dinyatakan berdistribusi **normal.**

G. Uji Normalitas B1 (KPM Kelas Eksperimen I dan Eksperimen II)

No	Xi	F	F Kum	Zi	F(Zi)	S(Zi)	F(Zi)-S(Zi)
1	44	3	3	-1.85739	0.031628	0.041667	0.010039015
2	57	5	8	-1.0887	0.138144	0.111111	0.027032767
3	58	3	11	-1.02957	0.151607	0.152778	0.001170885
4	60	2	13	-0.91131	0.181067	0.180556	0.000511781
5	61	1	14	-0.85217	0.197059	0.194444	0.002614163
6	64	2	16	-0.67478	0.249907	0.22222	0.027684561
7	69	5	21	-0.37913	0.352295	0.291667	0.06062873
8	70	3	24	-0.32	0.374484	0.333333	0.04115074
9	73	4	28	-0.14261	0.4433	0.388889	0.054410683
10	75	10	38	-0.02435	0.490288	0.527778	0.037490203
11	87	9	47	0.685218	0.753397	0.652778	0.10061901
12	89	4	51	0.803479	0.789151	0.708333	0.080817664
13	90	7	58	0.862609	0.805824	0.805556	0.0002683
14	93	1	59	1.040001	0.85083	0.819444	0.031385788
15	95	2	61	1.158262	0.876621	0.847222	0.029399159
16	97	3	64	1.276523	0.899115	0.888889	0.010225708
17	100	8	72	1.453914	0.927015	1	0.072985056
Jumlah	1282	72				L-Hitung	0.10061901
rata-							
rata	75.41176					L-Tabel	0.104416101
SD	16.91175						

Kesimpulan : Lhit < Ltab

Kesimpulan:

Oleh karena L hitung < L tabel, maka data hasil skor tes **Kemampuan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran** *Numbered Head Together* dan *Two Stay-Two Stray* (B1) dinyatakan berdistribusi **normal.**

H. Uji Normalitas B2 (KPM Kelas Eksperimen I)

No	Xi	F	F Kum	Zi	F(Zi)	S(Zi)	F(Zi)-S(Zi)
1	40	3	3	-1.49751	0.067131	0.041667	0.02546405
2	42	4	7	-1.38619	0.082845	0.097222	0.01437742
3	45	1	8	-1.21921	0.111382	0.111111	0.00027132
4	46	2	10	-1.16355	0.122303	0.138889	0.01658558
5	49	3	13	-0.99657	0.159486	0.180556	0.02106913
6	53	5	18	-0.77393	0.219485	0.25	0.03051471
7	57	3	21	-0.55129	0.290716	0.291667	0.00095077
8	58	2	23	-0.49563	0.310076	0.319444	0.00936846
9	60	1	24	-0.38432	0.350372	0.333333	0.01703883
10	65	3	27	-0.10602	0.457784	0.375	0.08278396
11	68	4	31	0.06096	0.524305	0.430556	0.09374909
12	69	5	36	0.11662	0.546419	0.5	0.0464194
13	71	2	38	0.227939	0.590153	0.527778	0.06237542
14	73	1	39	0.339258	0.632792	0.541667	0.09112571
15	75	8	47	0.450577	0.673853	0.652778	0.02107509
16	77	4	51	0.561896	0.712907	0.708333	0.00457335
17	80	6	57	0.728875	0.766961	0.791667	0.02470574
18	89	7	64	1.229811	0.890616	0.888889	0.00172714
19	93	3	67	1.452449	0.926812	0.930556	0.00374395
20	95	3	70	1.563768	0.941064	0.972222	0.03115824
21	100	2	72	1.842066	0.967267	1	0.03273276
Jumlah	1405	72				L-Hitung	0.09374909
rata-							
rata	66.90476					L-Tabel	0.1044161
SD	17.96637						

Kesimpulan:

Lhit < Ltab 0.0937491< 0.104416

diterima

Kesimpulan:

Oleh karena L hitung < L tabel, maka data hasil skor tes **Kemampuan Penalaran Matematis Siswa yang diajar dengan Model Pembelajaran** *Numbered Head Together* dan *Two Stay-Two Stray* (B2) dinyatakan berdistribusi **normal.**

UJI HOMOGENITAS

Uji Homogenitas Sub Kelompok

a. A1B1, A2B1, A1B2 dan A2B2

	db = (n -				log		
Var	1)	1/db	Si ²	db.Si ²	log (Si ²)	db.log (Si ²)	
A_1B_1	35	0.028571	227.1636	7950.727	2.35634	82.47185842	
A_2B_1	35	0.028571	232.5	8137.5	2.36642	82.8248035	
A_1B_2	35	0.028571	289.6667	10138.33	2.4619	86.16644826	
A_2B_2	35	0.028571	218.4727	7646.545	2.3394	81.87890306	
Jumlah	140	0.114286	967.803	33873.11	9.52406	333.3420132	
Varia	ansi Gabunga	$\ln(S^2) =$	241.9508				
	$Log(S^2) =$		2.383727				
	Nilai B =		333.7218				
N	Vilai X ² Hitun	ng =	0.874441				
Nilai X ² Tabel =			7.815				
	Kesimpulan	n:		Karena Ni	lai X ² hitur	$ng < X^2$ tabel mal	ka data homo

b. A1 dan A2

	db = (n -				log					
Var	1)	1/db	Si ²	db.Si ²	log (Si ²)	db.log (Si ²)				
A_1	71	0.014085	304.4706	21617.41	2.48355	176.3317196				
A_2	71	0.014085	211.5714	15021.57	2.32546	165.1074483				
Jumlah	142	0.028169	516.042	36638.98	4.809	341.4391679				
Varia	ansi Gabunga	$\ln(S^2)=$	258.021							
	$Log(S^2) =$		2.411655							
	Nilai B =		342.455							
N	Vilai X ² Hitun	ng =	2.339085							
1	Nilai X ² Tabe	el =	3.841							
	Kesimpulai	n		Karena Ni	lai X ² hitur	$ng < X^2$ tabel mal				

c. B1 dan B2

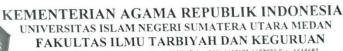
Var	db = (n - 1)	1/db	Si ²	db.Si ²	log (Si ²)	db.log (Si ²)
\mathbf{B}_1	71	0.014085	286.0074	20306.52	2.45638	174.4027811
\mathbf{B}_2	71	0.014085	322.7905	22918.12	2.50892	178.1333706
Jumlah	142	0.028169	608.7978	43224.65	4.9653	352.5361517
Varia	Variansi Gabungan (S ²)=					
	$Log(S^2) =$		2.483443			

Nilai B =	352.6489
Nilai X^2 Hitung =	0.259659
Nilai X^2 Tabel =	3.841
Kesimpulan	

UJI HIPOTESIS ANAVA

1. Hipotesis Pertama Perbedaan A1 dan A2 pada B1

Sumber Varians	dk	JK	RJK	F Hitung	F Tabel	
Antar Kelompok (A)	1	2812,5	2812,5		2.00	
Dalam Kelompok (D)	71	14148	199,26	14,115	3,98	
Total	72	16960				


2. Hipotesis Kedua Perbedaan A1 dan A2 pada B2

Sumber Varians	dk	JK	RJK	F Hitung	F Tabel	
Antar Kelompok (A)	1	2913,4	2913,4		2.00	
Dalam Kelompok (D)	71	17214	242,45	12,016	3,98	
Total	72	20128		1		

3. Hipotesis Ketiga Perbedaaan A1 dan A2 dan Hipotesis Keempat Interaksi

Sumber Varians	dk	JK	RJK	F Hitung	F Tabel
Antar Kolom (A)	1	5725,44	5725,44	25,56	2.01
Antar Baris (B)	1	2970,25	2970,25	13,26	3,91
Interaksi (A x B)	1	0,4444	0,4444	0,002	
Antar Kelompok	3	8696,13	2898,713	12,94	2,67
Dalam Kelompok	140	31361,611	224,011		
Total	143	20128			

SURAT IZIN RISET

JI.Williem Iskandar Pasar V Medan Estate 20371 Telp. (061) 6615683-6622925 Fax. 6615683 Website: www.fitk.uinsu.ac.id e.mail: fitk@uinsu.ac.id Website: www.fitk.uinsu.ac.id

: B-2962/ITK/ITK.V.3/PP.00.9/ 02/2020 Nomor

Medan 24 Februari 2020

Lampiran: -

: Izin Riset Hal

Yth. Ka. SMA Swasta Kartika 1/2 Medan

Assalamu'alaikum Wr Wb

Dengan Hormat, diberitahukan bahwa untuk mencapai gelar Sarjana Strata Satu (S1) bagi Mahasiswa Fakultas Ilmu Tarbiyah dan Keguruan UIN Sumatera Utara Medan adalah menyusun Skripsi (Karya Ilmiah), kami tugaskan mahasiswa:

: DYAN WULANDARI PUTRI

Tempat/Tanggal Lahir

: Bekasi, 14 April 1999

NIM

305162083

Semester/Jurusan

VIII/Pendidikan Matematika

Untuk hal dimaksud kami mohon memberikan Izin dan bantuannya terhadap pelaksanaan Riset di SMA Swasta Kartika 1/2 Medan, guna memperoleh informasi/keterangan dan data-data yang berhubungan dengan Skripsi yang berjudul:

PERBEDAAN MODEL PEMBELAJARAN NUMBERED HEAD TOGETHER DAN MODEL PEMBELAJARAN TWO STAY TWO STRAY TERHADAP KEMAMPUAN PEMECAHAN MASALAH DAN PENALARAN MATEMATIS SISWA MATERI LIMIT FUNGSI ALJABAR KELAS XI SMA SWASTA KARTIKA 1/2 MEDAN

Demikian kami sampaikan, atas bantuan dan kerjasamannya diucapkan terima kasih.

Wassalam

a.n. Dekan

Wakil Dekan Bidang Kemahasiswaan

N dan Kerjasama

Dr.M.siono,S.Ag,M.Pd 19710727 200701 031

Tembusan:

Dekan Fakultas Ilmu Tarbiyah dan Keguruan UIN SU Medan

SURAT BALASAN RISET

YAYASAN KARTIKA JAYA SEKOLAH MENENGAH ATAS SMA SWASTA KARTIKA I-2

JLN. BRIGJEN. H.A. MANAF LUBIS HELVETIA MEDAN

SURAT KETERANGAN

Nomor: 074 / SK / SMA K I-2 / III / 2020

Yang bertanda tangan di bawah ini :

Nama Jabatan : MUHAMMAD SYAHRIL NST, S.Ag : Kepala SMA Kartika 1 – 2 Medan

Jalan Brigjen, H.A. Manaf Lubis Medan

Menerangkan bahwa:

Nama

DYAN WULANDARI PUTRI

Tempat / Tanggal Lahir

Bekasi / 14 April 1999

Bangsa / Agama

Indonesia / Islam

N I M

305162083

Program Studi

Pendidikan Matematika

Fakultas

Ilmu Tarbiyah dan Keguruan

Instansi Alamat Universitas Islam Negeri Sumatera Utara Medan Jalan Gatot Subroto Km. 7,5

Benar telah mengadakan RISET pada Tanggal 25 Februari s.d. 21 Maret 2020 di SMA Kartika 1–2 Medan, sesuai dengan surat dari Wakil Dekan Bidang Kemahasiswaan dan Kerjasama, Nomor : B-2962/ITK/ITK.V.3/PP.00.9/02/2020; Tanggal : 24 Februari 2020; Hal : Izin Riset, guna melengkapi Penulisan Skripsi, yang berjudul "PERBEDAAN MODEL PEMBELAJARAN NUMBERED HEAD TOGETHER DAN MODEL PEMBELAJARAN TWO STAY TWO STRAY TERHADAP KEMAMPUAN PEMECAHAN MASALAH DAN PENALARAN MATEMATIS SISWA MATERI LIMIT FUNGSI ALJABAR KELAS XI SMA SWASTA KARTIKA I-2 MEDAN."

Demikian Surat Keterangan ini kami perbuat dengan sebenarnya, untuk dapat dipergunakan seperlunya.

21 Maret 2020

MUHAMMAD SYAHRIL NST, S.Ag

DOKUMENTASI

KELAS EKSPERIMEN I

KELAS EKSPERIMEN II

Lembar Observasi Guru

Satuan Pendidikan : Sekolah Menengah Atas

Mata Pelajaran : Matematika Kelas/ Semester : XI / II (Genap)

Materi Pokok : Limit Fungsi Aljabar

Alokasi Waktu : 2 x 45 Menit

No	Aspek	To Allroton	Penilaian				
NO		Indikator	1	2	3	4	
	Pembelajaran kegiatan awal	membuka pelajaran			√		
1		mempersiapkan siswa untuk mengikuti pembelajaran			√		
1		melaksanakan kegiatan apersepsi		√			
		memberikan motivasi bagi siswa dalam pembelajaran			√		
	Pembelajaran kegiatan inti	melaksanakan kegiatan eksplorasi			√		
2		melaksanakan kegiatan elaborasi			√		
		melaksanakan kegiatan konfirmasi hasil			√		
	Pembelajaran kegiatan penutup	melakukan penarikan kesimpulan pada materi ajar			√		
3		memberikan tugas rumah			√		
		memberikan informasi materi berikut			√		
		menutup proses pembelajaran			V		
4	Penguasaan materi ajar	menunjukkan penguasaan materi ajar			√		
4		mengaitkan materi dengan kehidupan sehari-hari		$\sqrt{}$			
5	Strategi pembelajaran	menerapkan model pembelajaran		$\sqrt{}$			

6	Pemanfaatan	memanfaatkan media/alat bantu pembelajaran			\checkmark	
7	Pembelajaran yang memicu	memanfaatkan sumber belajar/buku			\checkmark	
		menumbuhkan partisipasi aktif siswa			\checkmark	
		menunjukkan sikap terbuka siswa			\checkmark	
/		menumbuhkan antusiasme siswa			\checkmark	
8	Penguasaan bahasa	menumbuhkan rasa percaya diri siswa				$\sqrt{}$
		menggunakan bahasa lisan, tertulis dan gambar yang jelas			\checkmark	
0	Penilaian proses dan hasil belajar	menyampaikan pesan dengan gaya yang sesuai			\checkmark	
0		memantau kemajuan belajar selama proses pembelajaran			\checkmark	
9	Penutup	melakukan penilaian akhir sesuai dengan tujuan pembelajaran			\checkmark	
		melakukan refleksi			\checkmark	
10		melaksanakan tindak lanjut			V	
		Jumlah	0	3	22	1

Keterangan:

1 = Kurang

2 = Cukup

3 = Baik

4 = Sangat Baik