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ABSTRACT

2

Mixed Integer Nonlinear Programming (MINLP) is one of the most general
modeling adigms in optimization which includes both nonlinear programming
(NLP) and Mixed Integer Linear Programming (MILP). There are two types of hybrids
methods for solving MINLP, such as hybrids between heuristic methods and other
heuristic methods and hybrid methods between exact methods and heuristic methods.
This study discusses the second hybrid method. In the proposed algorithmic stages, we
will determine the sggrch method and the variables to find an optimal solution. The
hybrid method aims to gain computational performance or conceptual simplification,
potentially at the cost of accuracy or precision.
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INTRODUCTION

n optimization problem consists of the set of independent variables and garameters, and often
includes conditions or restriction of the value of the variables [1]-]3]. Such restrictions are
termed constraints of the problem. The other important component of an optimization problem
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is the "good" measure called the objective function that depends on the variables of the
problem. T olution of the optimization problem is a set of variables that satisfy all
constraints, in such a way that the objective function achieves an optimal lue. The
representative form of standard in expressinggoptimization issues, making it easier to solve the
problem. The commonly used form is theI?bjective function f and the constraint function g
which is a real-value scalar function.

There are many optimization issues that contain discrete or integer variables [4]. These
variables can occur in modeling as whole unit statements, such as variables on the
determination of the number of labour, or decision models in which there are binary variables,
such as variables for determining investment on portfolio issues. Continuous variables can also
appear which for example present labour time, production volume. Nonlinearity may arise in
the optimization model, for example for problems in which physical properties are present,
such as the balance of fluid concentrations, or pgraps in the case of economies of scale. The
optimization model for nonlinear problems with discrete and continuous variables is known as
the Mixed Integer Nonlinear Programming (MlN]ﬁ) model [5].

The special class of MINLP issues discussed in this study is to assume discrete variables
that are linear and separable from continuous variables. This problem can be written as follows.

Minimize:
z=cly+f(x) 0]
Subject to:
h(x) <0 ()
g(x)+by<0 3)
xEXCcR}y€eEY cRY} C))]

Wheref: R" - R andh: R™ - RP, g:R" - R? are continues function and generally
behave smoothly defined in the n-dimensional convex polyhedral expressed by X =
fxrxeXcRLAx<ahU={yyeYcR}Ay<a,}

The heuristic approach proposed in the literature to solve the MINLP problem includes the
Variable Neighborhood Search [6][7], automatic variable assignment strategy [8], Local
Branching, feasible neighborhood snrch [9], feasibility pump [10] and [11], heuristic based
on iterative Rounding [12] proposes a MINLP heuristic called the Relaxed-Exact-Continuous-
Integer Problem Exploration (RECIPE) algorithm. This algorithm combines global search
phases based on the Ne'ghborhood Search Variables [13] and local search phases. However, in
the heuristic approach, one of the major algorithmic difficulties regarding to solving MINLP is
finding a viable solution. From the standpoint of the worst case complexity, finding a decent
MINLP solution is just as difficult as finding a viable Nonlinear Programming solution, the
NP-hard [9].

[ 10]
2. MIXED INTEGER NONLINIER PROGRAMMING

MINLP refers to mathematical programming with continuous and discrete variables and
inearities in the objective function and constraints. Mixed-integer nonlinear programming
(MINLP) problems combine the combinatorial difficulty of optimizing over discrete variable
sets with the challenges of handling nonlinear functions. MINLP is one of the most general
deling paradigms in optimization and includes both nonlinear programming (NLP) and
mixed-integer linear programming (MILP) as sub-problems. MINLPs are expressed as:
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minimize, f(x)
subjectto c(x) <0
x€EX
X € Z, V(E 1

(&)

5
Where f :R® - R and c: R® - R™ Ere assumed to be twice cminuously
differentiable functions, X < R is a bounded polyhedral set, and I € {1,...,n} 1s the index
seiggf integer variables. Note that the model might include maximizing, or equality constraints,
or lower and upper bounds | < c(x) < wu.

Definition 1. Problem (5) isq convex MINLP if the problem functions f(x) and c¢(x) are
convex. If either f (x) or any ¢;(x) is a non convex, then that (5) is a non-convex MINLP.

Definition 2. Given a set S, the convex hull of § is denoted by conv(S) and defined as
conv(S) = {xx =P+ 1 -Dx@vo<21<1,vx@xD es}

If X =1{x €ZP:lx<u}and [€ZP,u€ZP, then conv(X) = [Lu] is simply the
hypercube. In geggwal, however, even tough X itself is polyhedral, it is not easy to find conv(X).
The convex hull plays an important role in mixed-integer linear programming because a linear
programming (LP) can solve a MILP by solving an LP over its convex hull. Unfortunately,
finding the convex hull of a MILP is just as hard as solving the MILP.

The same result does not hold for MINLP, as the following example illustrates:

n
1
minimizez (x(- ——)
x 2

i=1

2

subject to x; € {0,1}
- . . . 1 1 . . .
The solution of the continuous relaxation is x = (E . 5) which is not an extreme point

of the feasible set and in fagy lies in the strict interior of the MINLP: see Figure 1. Because the
continuous minimizer lies in the interior of the conveemll of the feasible integer set, it cannot
be separated from the feasible set. However, (5) can be reformulated by introducing an
objective variable n and a constraint = f(x).then the following equivalent MINLP is
obtained.

min n
nx
subjectto  f(x)<n
c(x)<0 (©)
x€EX
x; ELVEI

The interesting point of (6) is that the optimal solution always lies on the boundary of the
convex hull of the feasible set and therefore allows us to use cutting-plane techniques.
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Figure 1. Small MINLP to illustrate the need for a linear objective function.

2.1. Relaxations of MINLPs
Here are strategies to be used to obtain relaxations of MINLPs.

1. Relaxing integrality. Integrality constraints x; € Z can be relaxed to x; € R for
alli € I. This procedure yields a nonlinear relaxation of MINLP. The type of
relaxation can be found in branch and-bound algorithms and is given by:

min fx)
x
subjectto ¢(x) <0 Q)
x€eX

2. Relaxing convex constraints. Constraints c¢(x) < 0 and f{x) < z containing convex
functions ¢ and f can be relaxed with a set of supporting hyperplanes obtained from
first-order Taylor series approximation:

z= 0 4 Vf(k)T(x - x”‘)). )
0> c® 4+ Vc(k)T(x - x(k)) 9
for a set of points x® k = 1,...,K. When ¢ and f are convex, any collection of such

hyperplanes forms a polyhedral relaxation of these constraints. This class of relaxations is used
in the outer approximation methods.

3. Relaxing nonconvex constraints. Constraints c(x) < 0 and f(x) < z containing
nonconvex functions require more work to be relaxed. One approach is to derive
convex underestimators, f (x) and ¢(x), which are convex functions that satisfy:

flx) < f(x) Andé(x) < c(x), Yx € conv(X) (10)
All these relaxations can enlarge the feasible set of (6), however they can be combined one
with another. For example, a convex underestimator of a non-convex function can be further

relaxed by using supporting hyperplanes, yielding a polyhedral relaxation. Figure 2 illustrates
the relaxation of integrality constraints and convex nonlinear constraints.
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Figure 2. Illustration of the two classes of relaxation

The left image shows the mgggd-integer feasible set (the union of the red lines), the top
right image shows the nonlinear relaxation obtained by relaxing the integrality constraints (the
shaded area is the NLP feasible set), and the bottom right figure shows a polyhedral relaxation
(the union of the red lines) as well as its LP relaxation (the shaded area).

Note that an infinite number of possible polyhedral relaxations exists, depending on the
choice of the pointsx (k) € conv(X), k = 1,...,K.If the solution to a relaxation is feasible
in (6), then it also solves the MINLP. In general, however, the solution is not feasible in (6),
and we must somehow exclude this solution from the relaxation.

2.2. Linearization Techniques

The first step is to convert the non-binary formulation to a binary or 0 — 1 formulation. In other
words, the integer variable x is replaced by binaryy. Assuming that each variable has a finite
upper boundu;, the expression for x can be written as:

X

=X

L
= Lo 2 Vij (11)

i =0,..,t

Where ¢; is the smallest positive integer such that u; < 26+ -1

The second step is to reduce the polynomial 0 —1 program to a linear 0 — 1 program by
introducing new 0 — 1 variables to take the place of cross product terms. While, the power
expression of the type y™(wherey = 0 or 1) can simply be replaced byy.

Let Q be the set of 0 — 1 variables, then every distinct product [] e, ¥ of 0 — 1 variables
would be replaced by a new 0 — 1 variablesyy. In order to ensure that y, = 1if and only
if[ [ jep ¥j = 1, we impose two new constraints:

YiegVitYo+q—1=0 (12)

=y, 20
See)i TP (13)
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Yo =00r1 (14)

Where g denotes the number of elements in Q. the linearized problem may simply be solved
by using any standard algorithm, such as Balas’ algorithm. However, the new 0 — 1 linear
program is formulated at significant cost. For every cross product termgggn extra binary variable
has to be added as well as two additional constraints. Therefore the number of variables and
constraints will increase drastically even for small nonlinear 0 — 1 programs.

3. UTER APPROXIMATION ALGORI']&IM

In the previous section described a decomposition method for solving problems belonging to
the class of MINLP problem. The method which is called Generalized Bender’s Decomposition
(GBD) method utilizes the mathematical principles of projection, dual-representation (outer-
approximation) and relaxation.

The main steps of the outer-approximation, proposed Yg [14]. They also usc these
principles, but in a different way. The main difference is that the outer-approximation algorithm
Exploits the optimal primal information of the sub-problems rather than the dual information
to dcﬁnwmixcd-integcr linear master program.

The outer-approximation algorithm gpndles a particular class of MINLP problem which
has the following characteristics. The continuous (x) and integer (y) (or discrete valued)
variables are separable, nonlinearities only appear in the continuous variables and the nonlinear
functions are defined to be convex. Therefore, mathematically this particular class of problem
cab stated in the following form:

Minimize ¢ =cTy+F(x)
Subject to f(x)+By <0
x€EX ,yeEY

X = {0y, xz o, x| < x5 <y}

Y= [@1-?@-- ,v)|l'j %8 y; < o' and integer}

qfhere the nonlinear functions F : R™ — Rand those in the vector functions f:R™ —
R are assumed to be continuously differentiable and convex on the n-dimensional compact
polyhedral convex set X. The first step of the outer-approximation algorithm is similar to GBD
method, that is, to select an integer combination y* € Y. The MINLP problem P, for fixed
y! then reduces to the following NLP sub-problem in x:

Minimize p(y) =c"y' +F(x)
Subjectto  f(x) <—By' [Pouc(y')]

In order to construct a master program as the main component of such an algorithm, we
solve the sub problem [Pouc(yf)] above for x. suppose that (¢ (yi), xh thc optimal solution
(provided the solution exists). Its optimal objective function valueg (y") provides a valid upper
bound on the optimal objective ¢ for sub-problem (P,,,). Based on the solution of the NLP
sub- problem, x*, an approximation to problem (P,,,,) can be constructed [14].

A linear outer-approximation derived at the point x! for nonlinear function F and fmay be
expressed with the following relation:

F)= (al) x — bt (15)
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f(x)=Dix — divx € X

Where a’ is the vector of variable coefficients for objective linearization b' is the constant
coefficients for objective linearization d' is the vector of constant coefficients for integer
variables, and D! is the matrix of variable coefficients for constraint linearization. Because of
the assumption that the nonlinear functions are continuously differentiable and convex, the
tangential approximation evaluated at x can be expressed as:

(a")Tx — bt = F(x")+l7F(x‘)T(x—x") (16)
Dix—di = f(x))+ Vf(xi) (x —xP) (17
Vx €eX

. .
Where VF(x") is the n-gradient vector and Vf(x') is the n X p Jacobian matrix evaluated
at givenx' € X.

4. IMPROVEMENT HEURISTICS

Several heuristics to search for a feasible solution of a MINLP have been proposed recently.
They all make use of L ILP, and NLP solvers to solve problems easier than the MINLP to
obtain a feasible point. Some of these heuristics may completely ignoathe objective function
and focus on finding a feasible solution. They may use the solution of the relaxation at any
node in the branch-and-bound as a starting point and tggto help out for the lack of focus on the
objective function of the MINLP.

Improvement heuristics start with a given feasible point x* of the MINLP and try to find a

better point. Two well-known heuristics for searching a better solution in the neighborhood of
a known solution have been adapted from MILP to MINLP.

4.1. Local Branching

Local branching is a heuristic for MINLPs, where all integer variables are binary, that is, x; €
{0,1}, vi € I. It was first introduced in the context of MILP by [11] and generalizes readily to
convex MINLPs. By describing local branching for convex MINLPs and then discuss an
extension to nonconvex MINLPs. The mprsin idea behind local branching is to use a generic
MILP solver at a tactical level that is controlled at a strategic level by a simple external
branching framework. Assume that given a feasible incumbent x* of (5), and consider the
following disjunction (generalized branching) for a fixed constant k €Z:

llx; —x7|l; < k (Left branch) or

[lx; — xf]l1 = k + 1 (Right branch) (18)

This disjunction corresponds to the Hamming distance of x; fromx;, and the left branch
can also be interpreted as a [; trustregion around the incumbent. In the case of binary variables,
we can rewrite (18) as two linear constraints:

Z X, + Z A-x)<k (lefo)

iE!;x{=D ['EF;X;=D

Or
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Z x; + Z (1 —x;) =k + 1 (right)

ielx;=0 iehxi=0

The left branch is constructed in such a way that it is much easier to solve than (5), typically
by choosing k [15] and [16]. By solving the left branch using any of the deterministic methods.

4.2. Relaxation-Induced Neighborhood Search (RINS)

In the RINS [17] heuristic, one searches for better solutions in the neighborhood of an already
known solution, much like local branching. However, instead of imposing a distance constraint
(18) to determine a neighborhood, variables are fixed to certain values. The variables to be
fixed are selected on the basis of the solution of the relaxation x’ , and the already known
incumbent x*. For all i €[ the variables are fixed to x],x; = x;. If the fixing reduces the
problem size considerghly, then it can be solved by calling the solver again [18] extend this
idea from MILP to the NLP-based branch-and-bound algorithm for convex MIN nce they
fix the integer variables as above, they solve the smaller MINLP using the LP/NLP-BB
algorithm. gghey show that the LP/NLP-BB algorithm is much faster on the smaller problems
than is the NLP-based branch and-bound algorithm.

5.PROPOSED ALGORITHM FOR SOLVING MINLPS

In the Settlement Algorithm, there are two types of methods used namely exact and heuristic
methods. The exact method is used in the nonlinear program settlement. The heuristic method
is used for the determination of the starting point used in completing the nonlinear program.
Then the next heuristic method is used to obtain integer completion.

The outline of the basic framework of the algorithm are:

Step 1 : Obtain a heuristic completion point for completion of nonlinear
programs.
Step 2 : Solve the nonlinear program of relaxation results from the MINLP

problem by using the starting point obtained in sggga 1. If the optimum value of this relaxation
problem has been obtained a worthy settlement. then Stop. The solution to MINLP has been
obtained. If not, go to step 3.

Step 3 : Obtain a heuristic method to obtain a worthy settlement solution.

Step 4 : Check the results obtained from step 3 if it can still be further, advanced to
step 5 otherwise Stop.

Step 5 : Go back to step 3.

6. CONCLUSION

The method for solving MINLP problems is in three major classes. The first class is formed by
the exact method class (or also called the deterministic method), provided the problem meet
certain conditions such as convexity, will be guaranteed to reach (convergent) at the optimum
settlement point or may indicate that there is no integer completion. In general, this exact
method has something in common, that is, doing a thorough tree search with rules capable of
limiting exploration of sub-trees. The second class is the heuristic method. This class does not
guarantee that at the time of the process of stopping at the perspective point of outcome is an
optimal value. The third class is the hybrid method.
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Programming Problems

There are two types of hybrids, namely hybrids between heuristic methods and other
heuristic methods and hybrid methods between exact methods and heuristic methods. This
study discusses the second hybrid method. In this research resulted in the settlement algorithm
to solve the MINLP problem with the exact and heuristic hybrid approach.

In the given algorithmic stages, we will determine (g search method and the variables in
finding a reasonable solution. The hybrid method aims to gain computational performance or
conceptual simplification, potentially at the cost of accuracy or precision. For further research,
we will do experiments in large-scale data settlement and obtain testing, and validation the
algorithm developed.
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