

PERBEDAAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA DENGAN MENGGUNAKAN MODEL PEMBELAJARAN PROBLEM BASED LEARNING (PBL) DAN MODEL PEMBELAJARAN KOOPERATIF TEAM ASSISTED INDIVIDUALIZATION (TAI) DI KELAS VII MTs Ex PGA UNIVA MEDAN T.A 2018/2019

SKRIPSI

DiajukanUntukMelengkapi Tugas dan MemenuhiSyarat-Syarat Untuk Mencapai Gelar Sarjana Pendidikan (S.Pd.) Dalam Ilmu Tarbiyah dan Keguruan

Oleh: MARIANA ULFAH RAMBE NIM. 35.14.3.079

Pembimbing I

Pembimbing II

<u>Drs. Hadis Purba, MA</u> NIP.19620404 1993031 002 Siti Maysarah, M.Pd NIP. BLU 1100000076

JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS ILMU TARBIYAH DAN KEGURUAN UNIVERSITAS ISLAM NEGERI SUMATERA UTARA MEDAN 2018

PERBEDAAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA DENGAN MENGGUNAKAN MODEL PEMBELAJARAN PROBLEM BASED LEARNING (PBL) DAN MODEL PEMBELAJARAN KOOPERATIF TEAM ASSISTED INDIVIDUALIZATION (TAI) DI KELAS VII MTs Ex PGA UNIVA MEDAN T.P 2018/2019

SKRIPSI

DiajukanUntukMelengkapi Tugas dan MemenuhiSyarat-Syarat Untuk Mencapai Gelar Sarjana Pendidikan (S.Pd.) Dalam Ilmu Tarbiyah dan Keguruan

OLEH:

MARIANA ULFAH RAMBE NIM. 35.14.3.091

JURUSAN PENDIDIKAN MATEMATIKA
FAKULTAS ILMU TARBIYAH DAN KEGURUAN
UNIVERSITAS ISLAM NEGERI
SUMATERA UTARA
MEDAN
2018

PERNYATAAN KEASLIAN SKRIPSI

Saya bertanda tangan dibawah ini:

Nama : **Mariana Ulfah Rambe**

Nim : 35.14.3.079

Jur/Program Studi : Pendidikan Matematika/S1

Judul Skripsi : "Perbedaan Kemampuan Pemecahan Masalah

Matematika Siswa Dengan Menggunakan Model

Pembelajaran Problem Based Learning dan

Team Assisted Individualization (TAI) di Kelas

VII MTs Ex PGA UNIVA Medan"

Menyatakan dengan sebenarnya bahwa skripsi yang saya serahkan ini benar-benar merupakan hasil karya sendiri, kecuali kutipan-kutipan dari ringkasan-ringkasan yang semuanya telah saya jelaskan sumbernya.

Apabila kemudian hari terbukti atau dapat dibuktikan skripsi ini hasil ciplakan, maka gelar dan ijazah yang diberikan oleh Universitas batal saya terima.

Medan, November 2018

Yang Membuat Pernyataan,

Mariana Ulfah Rambe NIM. 35.14.3.079

KEMENTERIAN AGAMA UNIVERSITAS ISLAM NEGERI SUMATERA UTARA FAKULTAS ILMU TARBIYAH DAN KEGURUAN

Jl. Williem Iskandar Pasar V telp. 6615683- 662292, Fax. 6615683 Medan Estate 20731

SURAT PENGESAHAN

Skripsi ini yang berjudul "PERBEDAAN KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA DENGAN MENGGUNAKAN MODEL PEMBELAJARAN PROBLEM BASED LEARNING DAN TEAM ASSISTED INDIVIDUALIZATION (TAI) DI KELAS VII MTS EX PGA UNIVA MEDAN T.A 2018/2019"

OLEH **MARIANA ULFAH RAMBE** telah dimunaqasyahkan dalam Sidang Munaqasyah Sarjana Strata Satu (S-1) Fakultas Ilmu Tarbiyah dan Keguruan UIN-SU Medan pada tanggal:

14 November 2018 M Muharram 1439 H

Dan telah diterima sebagai persyaratan untuk memperoleh gelar Sarjana Pendidikan (S.Pd) dalam Ilmu Tarbiyah dan Keguruan pada Jurusan Pendidikan Matematika Fakultas Ilmu Tarbiyah dan Keguruan UIN Sumatera Utara Medan.

Panitia Sidang Munaqasyah Skripsi Fakultas Ilmu Tarbiyah dan Keguruan UIN-SU Medan

Ketua Sekretaris

<u>Dr. Indra Jaya, M.Pd</u> NIP. 1965070 619970 3 2001

Siti Maysarah M.Pd NIP. BLU 1100000076

Anggota Penguji

1. <u>Siti Maysarah M.Pd</u> NIP. BLU 1100000076 2. Fibri Rakhmawati, S.Si. M. Si NIP. 1980 0211 200312 2014

3.<u>Drs. Mahidin. M.Pd</u> NIP. 19580420 199403 1 001 4. <u>Drs. Hadis Purba, MA</u> NIP. 19620404 1993031 002

Mengetahui Dekan Fakultas Ilmu Tarbiyah dan Keguruan Dr. H. Amiruddin Siahaan, M.Pd NIP. 19601006 199403 1 002

BLANKO PENYERAHAN SKRIPSI FAKULTAS ILMU TARBIYAH DAN KEGURUAN UIN SUMATERA UTARA

NAMA : MARIANA ULFAH RAMBE

NIM : 35.14.3.079

FAKULTAS : ILMU TARBIYAH DAN KEGURUAN

JURUSAN : PENDIDIKAN MATEMATIKA

TANGGAL SIDANG : 14 November 2018

NO	KEPADA	BANYAKNYA	NAMA PENERIMA	TANDA TANGAN
1.	Ketua Jurusan Matematika FITK UIN-SU	1	Dr. Indra Jaya, M.Pd	1.
2.	Pembimbing Skripsi I	1	Drs. Hadis Purba, MA	2.
3.	Pembimbing Skripsi II	1	Siti Maysarah, M.Pd	3.
4.	Kasubbag Akademik Kemahasiswaan FITK UIN SU	1	Rafnitul Hasanah Harahap, M.A	4.
5.	Kabag Tata Usaha FITK UIN-SU	1	Hafni Habsah, M.A	5.
6.	Kepala Perpustakaan Tarbiyah UIN SU	1	Dra. Siti Aisyah	6.

Lembaran ini diserahkan kepada akademik kemahasiswaan Fakultas Ilmu Tarbiyah dan Keguruan UIN Sumatera Utara Medan

> Medan, Oktober 2019 Yang Menyerahkan

MARIANA ULFAH RAMBE NIM. 35.14.3.079

ABSTRAK

Nama : MARIANA ULFAH RAMBE

Nim : 35.14.3.079

Fak/Jur : Ilmu Tarbiyah dan Keguruan/Pendidikan

Matematika

Judul : "Perbedaan Kemampuan Pemecahan

Masalah Matematika Siswa Dengan Menggunakan Model Pembelajaran *Problem* Based Learning dan Team Assisted Individualization (TAI) di Kelas VII MTs Ex

PGA UNIVA Medan T.A 2018/209"

Kata Kunci : Kemampuan Pemecahan Masalah, Model
Pembelajaran Problem Based Learning, Model
Pembelajaran Team Assisted Individualization

Penelitian ini bertujuan untuk mengetahui perbedaan kemampuan pemecahan masalah matematika siswa dengan menggunakan model pembelajaran *Problem Based Learning* dan *Team Assisted Individualization* di Kelas VII MTs Ex PGA UNIVA Medan"

Penelitian ini adalah penelitian kuantitatif, jenis penelitian eksperimen. Populasinya adalah seluruh siswa kelas VII MTs Ex PGA UNIVA Medan. Sampel dalam penelitian ini adalah 33 siswa di kelas VII-A dan 33 siswa di kelas VII-B.

Analisis data dilakukan dengan menggunakan rumus statistika uji t. Hasil temuan ini menunjukkan : 1) Kemampuan pemecahan masalah matematika siswa dengan menggunakan model pembelajaran Problem Based Learning rata-rata nilai siswa 47,93 menjadi 73,7 setelah diperlakukan model. 2) Kemampuan pemecahan masalah matematika siswa dengan menggunakan model pembelajaran kooperatif Team Assisted Individualization meningkatdengan rata-rata nilai siswa 53,12 menjadi 73,515 setelah diperlakukan model pembelajaran. 3) tidak terdapat perbedaan kemampuan pemecahan masalah matematika siswa yang diajar dengan

menggunakan model pembelajaran Problem Based Learning dan Team Assisted Individualization pada materi segitiga di kelas VII MTs Ex PGA UNIVA Medan

Temuan penelitian ini menunjukkan bahwa tidak ada perbedaan kemampuan pemecahan masalah matematika siswa dengan menggunakan model pembelajaran Problem Based Learning dan Team Assisted Individualization pada materi segitiga di kelas VII MTs Ex PGA UNIVA Medan.

Pembimbing Skripsi

Siti Maysarah M.Pd

NIP. BLU

1100000076

KATA PENGANTAR

Puji syukur peneliti ucapkan kepada Allah SWT atas segala limpahan anugerah dan rahmat yang diberikan-Nya sehingga penelitian skripsi ini dapat diselesaikan sebagaimana yang diharapkan. Tidak lupa shalawat serta salam kepada Rasulullah Muhammad SAW yang merupakan contoh tauladan dalam kehidupan manusia menuju jalan yang diridhoi Allah Swt. Skripsi ini berjudul "Perbedaan Kemampuan Pemecahan Masalah Matematika Siswa Dengan Menggunakan Model Pembelajaran *Problem Based Learning* dan *Team Assisted Individualization* (TAI) di Kelas VII MTs Ex PGA UNIVA Medan" dan diajukan untuk memenuhi salah satu persyaratan untuk memperoleh gelar Sarjana Pendidikan (S.Pd) di Fakultas Ilmu Tarbiyah Dan Keguruan Universitas Islam Negeri Sumatera Utara Medan.

Peneliti menyadari bahwa skripsi ini dapat diselesaikan berkat dukungan dan bantuan dari berbagai pihak. Oleh karena itu, Peneliti berterima kasih kepada semua pihak yang secara langsung dan tidak langsung memberikan kontribusi dalam menyelesaikan skripsi ini. Secara khusus dalam kesempatan ini Peneliti menyampaikan ucapan terima kasih yang sebesar-besarnya kepada:

Bapak DR. Amiruddin Siahaan, M.Pd selaku Dekan Fakultas Ilmu Tarbiyah
 Dan Keguruan Universitas Islam Negeri Sumatera Utara yang telah memberi
 dukungan kepada seluruh mahasiswa sehingga proses penyelesaian penulisan
 skripsi berjalan dengan baik.

- Bapak Dr. Indra Jaya, M.Pd selaku Ketua Jurusan Pendidikan Matematika yang telah memberikan dukungan dan mempermudah segala proses penyusunan skripsi ini.
- Ibu Drs. Hadis Purba, MA selaku Pembimbing Skripsi I dan Ibu Siti Maysarah, M.Pd selaku Pembimbing Skripsi II yang telah membimbing dan menyalurkan ilmunya serta arahan guna penyempurnaan dalam penulisan skripsi ini.
- Bapak Drs. Asrul, M.Si selaku Dosen Pembimbing Akademik yang memberika inspirasi dan semangat sehingga skripsi ini bisa selesai sesuai yang diharapkan.
- 5. Seluruh dosen di lingkungan UIN-SU Medan yang senantiasa memberikan segala ilmu dan arahan yang sangat bermanfaat bagi saya selama masa perkuliahan yang dapat saya gunakan untuk penyusunan skripsi ini.
- 6. Bapak Drs. Ahmad Johan selaku Kepala Sekolah MTs Ex PGA UNIVA Medan, dan Ibu Balqis, S.Pd selaku Guru pamong, Guru-guru, Staf/Pegawai, dan siswa-siswi di MTs Ex PGA UNIVA Medan. Terima kasih telah banyak membantu dan mengizinkan peneliti melakukan penelitian sehingga skripsi ini bisa selesai.
- 7. Keluarga saya, terutama kepada ayahanda Asmar Rambe dan Ibunda tercinta Zainab Tanjung yang selalu memberi dukungan moril maupun spiritual, yang telah mencurahkan kasih sayang dalam membesarkan, mendidik dan mendo'akan saya dalam berjuang menuntut ilmu sampai saat ini.

- Kedua saudara kandung saya Adik Nurul Azmi Rambe dan Ilham Firdaus Rambe yang senantiasa mendukung dan memberi semangat sampai saya dapat menyelesaiakan skripsi ini.
- 9. Sahabat-sahabat terbaik saya MA'RUFAH yang selalu memberi semangat dan menemani saya untuk sama-sama berjuang menyelesaikan skripsi ini.
- 10. Sahabat-sahabat terbaik saya Heni Alefia Damayanti, Khairin Zahara, Khoirun Nisah, Indriani, Siti Hardiyanti, dan Siti Aisyah Bako yang selalu memberi semangat dan menemani saya untuk sama-sama berjuang menyelesaikan skripsi ini. Terkhusus kepada orang yang sangat saya repotkan yaitu Heni, Khairin, indri dan Bako, terima kasih atas waktu, bantuan, semangat, kerjasama, dukungan dan segala hal yang membuat saya selalu merasa senang.
- 11. Teman-teman seperjuangan di Kelas PMM-5 UIN-SU stambuk 2014 atas kebersamaannya, semangat, saling mengingatkan dan kerjasamanya selama ini.
- 12. Serta semua pihak yang tidak dapat Peneliti tuliskan satu-persatu namanya yang membantu Peneliti hingga selesainya Penelitian skripsi ini.

Semoga Allah SWT membalas semua yang telah diberikan Bapak/Ibu serta Saudara/I, kiranya kita semua tetap dalam lindungan-Nya. Peneliti menyadari bahwa masih banyak kekurangan dan kelemahan baik dari segi isi maupun tata bahasa. Untuk itu Peneliti mengharapkan kritik dan saran yang bersifat membangun dari pembaca. Peneliti berharap semoga skripsi ini dapat bermanfaat bagi semua pihak dan dunia pendidikan. Amin.

Medan, 2018

Mariana Ulfah Rambe

DAFTAR ISI

ABSTRAK1
KATA PENGANTARi
DAFTAR ISIvi
DAFTAR TABELvii
DAFTAR GAMBARx
DAFTAR LAMPIRANxi
BAB I PENDAHULUAN1
A. Latar Belakang Masalah1
B. Identifikasi Masalah7
C. Batasan Masalah8
D. Rumusan Masalah8
E. Tujuan Penelitian9
F. Manfaat Penelitian8
A. Kerangka Teori
1. Pengertian pembelajaran10
2. Model pembelajaran11
3. Model Problem Based Learning (PBL)
a. Pengertian Problem Based Learning (PBL)
b. Karakteristik pembelajaran berbasis masalah19
c. Langkah-langkah <i>Problem Based Learning</i> 21
d. Kelebihan dan kelemahan Model Probem Based Learning
e. Teori pendukung yag melandasi model pembelajaran PBL
4. Model pembelajaran kooperatif Team Assisted Individualization (TAI)24
a. Pengertian model pembelajaran kooperatif Team Assisted
Individualization (TAI)24
b. Langkah-langkah model pembelajaran TAI25
c. Kelebihan dan kelemahan model pembelajaran kooperatif Team
Assisted Individualization (TAI)26

d. Teori pendukung model pembelajaran Team Assiste Individualization28
5. Kemampuan Pemecahan Masalah Matematika
6. Materi keliling dan luas segitiga
B. Kerangka Pikir
C. Penelitian Yang Relevan
D. Pengajuan Hipotesis
BAB III METODE PENELITIAN39
A. Jenis Penelitian39
B. Lokasi Dan Waktu Penelitian39
C. Populasi Dan Sampel40
D. Definisi Operasional41
E. Instrumen Pengumpulan Data
F. Teknik Pengumpulan Data49
G. Teknik Analisis Data50
BAB IV HASIL PENELITIAN DAN PEMBAHASAN56
BAB V KESIMPULAN DAN SARAN76
A. Kesimpulan76
B. Implikasi77
C. Saran
DAFTAR PUSTAKA80
LAMPIRAN83

DAFTAR TABEL

Tabel 2.1: Langkah-langkah Pembelajaran Kooperatif	16
Tabel 2.2: Indikator PBL	21
Tabel 3.1: Pemberian skor kemampuan pemecahan masalah	44
Tabel 3.2 : Uji validitas	45
Tabel 3.3 : Uji Reliabilitas Instrumen soal	47
Tabel 3.4 : Tingkat Kesukaran Soal	48
Tabel 3.5 : Kriteria Daya Pembeda	49
Tabel 3.6 : Teknik Pengumpulan Data	50
Tabel 4.1 : Deskripsi Hasil <i>Pretest</i> Kemampuan pemecahan masalah	
matematika siswa dikelas eksperimen 1	56
Tabel 4.2 Deskripsi Hasil <i>Posttest</i> Kemampuan pemecahan masalah	
matematika siswa dikelas Eksperimen 1	58
Tabel 4.3 Deskripsi <i>Pretest</i> Kemampuan pemecahan masalah matematika	
siswa kelas Eksperimen 2	50
Tabel 4.4 Deskripsi hasil <i>posttest</i> kemampuan pemecahan masalah matematika	
siswa kelas eksperimen 2	51
Tabel 4.5 Kemampuan Pemecahan Masalah Matematika Siswa Kelas	
Eksperimen 1 dan Kelas Eksperimen 2	52
Tabel 4.6 Rangkuman Hasil Uji Normalitas dengan Teknik Analisis <i>Lilliefors</i>	55
Tabel 4.7 Rangkuman hasil analisis homogenitas data pretest dan posttest	
kelas eksperimen 1 dan eksperimen 2	56
Tabel 4.8 Ringkasan Hasil Perhitungan Uji t	58

DAFTAR GAMBAR

Gambar 1.1 : Contoh hasil kerja siswa pada jawaban nomor dua	5
Gambar 2.2 : Segitiga <i>DEF</i>	34
Gambar 4.1 : Histogram hasil <i>pretest</i> kemampuan pemecahan masalah	
matematika siswa di kelas Eksperimen 1	57
Gambar 4.2 : Histogram hasil <i>posttest</i> kemampuan pemecahan masalah	
matematika siswa di kelas Eksperimen 1	59
Gambar 4.3 : Histogram hasil <i>pretest</i> kemampuan pemecahan masalah	
matematika siswa di kelas Eksperimen 2	60
Gambar 4.4 : Histogram hasil posttest kemampuan pemecahan masalah	
matematika siswa di kelas Eksperimen 2	62
Gambar 4. 5 : Hasil post test siswa Kemampuan Tinggi Kelas Eksperimen 1	69
Gambar 4.6: Hasil Pos test siswa Kemampuan Sedang Kelas Eksperimen 1	70
Gambar 4.7: Hasil Pos test siswa Kemampuan Rendah Kelas Eksperimen 1	70
Gambar 4.8: Hasil Pos test siswa Kemampuan Tinggi Kelas Eksperimen 2	72
Gambar 4.9: Hasil Pos test siswa Kemampuan Sedang Kelas Eksperimen 2	73
Gambar 4.10: Hasil Pos test siswa Kemampuan Rendah Kelas Eksperimen 2	73

DAFTAR LAMPIRAN

Lampiran 1	Lembar Kerja Siswa	83
Lampiran 2	Kunci jawaban LKS	87
Lampiran 3	Pedoman Penskoran Pemecahan Masalah	89
Lampiran 4	Uji Validitas Butir Instrumen	90
Lampiran 5	Nilai r Product Moment	94
Lampiran 6	Hasil Perhitungan Uji Reliabilitas	95
Lampiran 7	Perhitungan Uji Taraf Kesukaran Test Hasil Belajar Matematika	99
Lampiran 8	Tabel Daya Pembeda Soal	101
Lampiran 9	Nilai Pretest dan Pos test Siswa Kelas Eksperimen 1	104
Lampiran 10	Nilai Pretest dan Postest Siswa Kelas Eksperiment 2	105
Lampiran 11	Perhitungan Rata-rata dan Simpangan Baku Pre test dan Pos test	
	Kelas Eksperimen 1	106
Lampiran 12	Perhitungan Rata-rata dan Simpangan Baku Pre test dan Pos test	
	Kelas Eksperimen 2	109
Lampiran 13	Perhitungan Distribusi Frekuensi Pre test dan Pos test Kelas	
	Eksperimen 1	112
Lampiran 14	Perhitungan Distribusi Frekuensi Pre test dan Pos test Kelas	
	Ekperiment 2	116
Lampiran 15	Tabel Perhitungan Uji Normalitas (Pre Tes) kelas Eksperimen 1	120
Lampiran 16	Tabel Perhitungan Uji Normalitas (Post Tes) kelas Eksperimen 1	121
Lampiran 17	Tabel Perhitungan Uji Normalitas (Pre Tes) kelas Eksperimen 2	122
Lampiran 18	Tabel Perhitungan Uji Normalitas (Post Tes) kelas Eksperimen 2	123
Lampiran 19	Perhitungan Uji Homogenitas Data Tes Kemampuan Pemecahan	
	Masalah Matematika Siswa (Pre Test)	124
Lampiran 20	Perhitungan Uji Homogenitas Data Tes Kemampuan Pemecahan	
	Masalah Matematika Siswa (Post Test)	126
Lampiran 21	Uji Hipotesis Data Kemampuan Pemecahan Masalah Matematika	
	siswa	128
Lampiran 22	Foto Kegiatan Selama Penelitian	131

BABI

PENDAHULUAN

A. Latar Belakang Masalah

Pendidikan pada dasarnya merupakan proses untuk membantu manusia dalam mengembangkan potensi dirinya sehingga mampu menghadapi setiap perubahan yang terjadi. Melalui pendidikan manusia dapat meningkatkan pengetahuan, kemampuan dan kreativitas terhadap perkembangan ilmu pengetahuan dan teknologi. Perkembangan ilmu pengetahuan dan teknologi telah membawa perubahan pada semua aspek kehidupan.

Menurut Langeveled dalam Engkoswara, pendidikan adalah bimbingan atau pertolongan yang diberikan oleh orang dewasa kepada perkembangan anak untuk mencapai kedewasaan dengan tujuan agar anak cukup cakap melaksanakan tugas hidupnya sendiri tidak dengan bantuan orang lain, dengan kata lain membimbing anak mencapai kedewasaan. Sedangkan menurut Ivan Illich, pendidikan adalah pengalaman belajar yang berlangsung dalam segala lingkungan dan sepanjang hidup. ¹

Menurut Dewantara dalam Rosdiana, pendidikan adalah daya upaya untuk memberi tuntunan pada segala kekuatan kodrat yang ada pada anak-anak, agar mereka baik sebagai individu maupun sebagai anggota masyarakat, dapatlah mencapai kesel amatan dan kebahagiaan hidup lahir bathin yang setinggitingginya.²

¹ Engkoswara, 2015, *Administrasi Pendidikan*, Bandung : Alfabeta, hal.5.

² Rosdiana, 2009, *Pendidikan Suatu Pengantar*, Medan : Cita Pustaka Media Perintis, hal.11.

Pendidikan merupakan kebutuhan sepanjang hayat. Setiap manusia membutuhkan pendidikan dan berhak mendapatnya sampai kapanpun dan dimanapun. Pendidikan mempunyai peranan yang sangat penting dalam pengembangan dan perwujudan diri individu, terutama bagi pembangunan bangsa dam negara. Kemajuan suatu kebudayaan bergantung kepada cara kebudayaan tersebut mengenali, menghargai, dan memanfaatkan sumber daya manusia dan hal ini berkaitan erat dengan kualitas pendidikan yang diberikan kepada anggota masyarakat dan kepada peserta didik.

Adapun tujuan pendidikan dalam Nasional yang harus diikuti ialah ketetapan MPR No. IV/PMR/1978 tentang garis-garis besar haluan negara yang menyatakan:

"Pendidikan nasional berdasarkan atas pancasila dan bertujuan untuk meningkatkan ketakwaan terhadap Tuhan yang maha esa, kecerdasan, keterampilan, mempertinggi budi pekerti, memperkuat kepribadian dan mempertebak semangat kebangsaan agar dapat menumbuhkan manusiamanusia pembangunan yang dapat membangun dirinya sendiri serta bersama-sama bertanggung jawab atas pembangunan bangsa". ³

Pengaplikasian dari tujuan pendidikan tersebut adalah kegiatan pembelajaran. Kegiatan pembelajaran sangat berperan penting dalam kemajuan pendidikan. Dalam prosesnya, pembelajaran harus mengetahui masalah dalam pembelajaran tersebut terlebih dahulu. Jika permasalahan dalam pembelajaran terselesaikan maka akan muncullah perubahan. Perubahan itulah hasil dari pembelajaran dan akan mengakibatkan kemajuan dalam bidang teknologi dan ilmu.

³ Mara Samin, 2016, *Telaah Kurikulum; Pendidikan Menengah Umum/Sederajat*, Medan: Perdana Publishing, hal. 62.

Matematika merupakan salah satu ilmu bantu yang sangat penting dan berguna dalam kehidupan sehari-hari maupun dalam menunjang perkembangan ilmu dan teknologi. Ainun mengatakan bahwa:

"Pembelajaran matematika bertujuan supaya siswa memiliki kemampuan sebagai berikut: (1) Memahami konsep matematika, menjelaskan keterkaitan antar konsep dan mengaplikasikan konsep atau algoritma, secara luwes, akurat, efisien, dan tepat, dalam pemecahan masalah (2) Menggunakan penalaran pada pola dan sifat, melakukan manipulasi matematika dalam membuat generalisasi, menyusun bukti, atau menjelaskan gagasan dan pernyataan matematika. (3) Memecahkan masalah yang meliputi kemampuan memahami masalah, merancang Strategi matematika, menyelesaikan Strategi, dan menafsirkan solusi yang diperoleh. (4) Mengkomunikasikan gagasan dengan simbol, tabel, diagram, atau media lain untuk memperjelas keadaan atau masalah. (5) Memiliki sikap menghargai kegunaan matematika dalam kehidupan, yaitu memiliki rasa ingin tahu, perhatian dan minat dalam mempelajari matematika, serta sikap ulet dan percaya diri dalam pemecahan masalah". 4

Untuk menanamkan kemampuan-kemampuan matematika tersebut kepada siswa merupakan usaha yang sangat berat dikarenakan banyak siswa memiliki pandangan negatif terhadap matematika. Berdasarkan hasil observasi yang dilakukan pada tanggal 16 April 2018 bahwasanya telah dituturkan oleh guru matematika yang bernama ibu Balqis mengatakan bahwa "Dari berbagai bidang studi yang diajarkan di sekolah matematika merupakan bidang pelajaran yang dianggap paling sulit oleh berbagai siswa, baik yang tidak berkesulitan belajar dan bagi siswa yang berkesulitan belajar". Kemudian ibu Balqis juga menambahkan bahwa ketika pembelajaran biasanya ia akan menulis materi kemudian menjelaskan materi.

Dari penjelasan di atas tersebut terlihat bahwa guru selalu memakai model pembelajaran yang sama yang mengakibatkan kurangnya keterlibatan siswa dalam

⁴ Nur Ainun, 2015, *Peningkatan Kemampuan Penalaran Matematis Siswa Madrasah Aliyah Melalui Model Pembelajaran Kooperatif Tipe Teams Games Tournament*, Jurnal Peluang, Volume 4, Nomor 1, Oktober 2015, ISSN: 2302-5158, hal. 56.

proses pembelajaran. Selain itu berdasarkan penjelasan di atas siswa juga memandang matematika sebagai bidang studi yang paling sulit . Meskipun demikian, siswa harus mempelajarinya karena matematika merupakan sarana untuk memecahkan masalah kehidupan sehari-hari. Untuk itu kesulitan belajar matematika harus diatasi sedini mungkin. Kalau tidak, siswa akan menghadapi banyak masalah karena hampir semua bidang studi memerlukan matematika yang sesuai.

Melihat pentingnya kemampuan pemecahan masalah yang dimilki oleh siswa, maka peneliti melakukan observasi awal di MTs Ex Pga UNIVA Medan, peneliti memberikan tes kepada siswa yang terdiri dari 20 orang siswa berupa tes kemampuan pemecahan masalah sebanyak 1 soal yang penyelesaiannya menggunakan konsep materi sebagai berikut:

1. Sebidang tanah berbentuk segitiga dengan panjang tiap sisi tanah berturutturut 5 m, 6 m, dan 7 m. Di sekelilingtanah tersebut akan dipasang pagar dengan biaya Rp 85.000 per meter. Berapakah biaya yang diperlukan untuk pemasangan pagar tersebut?

Berikut adalah hasil pengerjaan beberapa kesalahan menyelesaikan soal uraian di atas.

Siswa tidak mampu memahami masalah dalam menuliskan apa yang diketahui dan apa yang Siswa dapat ditanya. merencanakan pemecahan masalah dalam schidang tanah burbentuk gan panjang tiap merencanakan rumus yang digunakan namun siswa tidak mampu menyelesaikan masalah dimana

Gambar 1.1 contoh hasil kerja siswa pada jawaban nomor dua

Dari hasil observasi yang dilakukan peneliti di MTs Ex Pga UNIVA Medan dengan materi segitiga tergolong rendah yaitu 35% (7 siswa) dapat memahami masalah dengan menuliskan yang diketahui dan ditanya dengan benar, 45% (9 siswa) dapat merencanakan pemecahan masalah yang relevan dengan soal secara lengkap, 30% (6 siswa) dapat melaksanakan pemecahan masalah dengan menggunakan langkah-langkah penyelesaian dan memilki solusi dengan benar, 15% (3 siswa) memeriksa kembali hasil yang diperoleh dengan menuliskan kembali atau menyimpulkan hasil yang ditanyakan soal dengan benar.

Berdasarkan jawaban siswa tersebut menunjukkan siswa kesulitan untuk memahami maksud soal tersebut, merumuskan apa yang diketahui serta yang ditanyakan soal tersebut, merencanakan penyelesaian soal tersebut serta proses perhitungan atau strategi penyelesaian dari jawaban yang dibuat siswa kurang

sesuai, juga siswa tidak memeriksa kembali jawabannya.

Rendahnya kemampuan matematika tersebut menyebabkan munculnya sikap ketidaksenangan siswa terhadap pelajaran matematika begitu juga sebaliknya, ketidaksenangan siswa terhadap mata pelajaran matematika menyebabkan rendahnya kemampuan matematika tersebut.⁵

Keberhasilan proses kegiatan belajar mengajar matematika dapat dilihat dari tingkat pemecahan masalah siswa. Semakin tinggi tingkat kemampuan pemecahan masalah siswa maka semakin tinggi pula tingkat keberhasilan pembelajaran. Namun sangat berbeda dengan kenyataannya, seperti yang telah dipaparkan oleh ibu Balqis salah satu guru di MTs Ex Pga UNIVA Medan bahwa siswa sangat menganggap matematika sebagai beban dan juga siswa kurang memahami konsep dasar matematika.

Dari permasalahan tersebut diketahui bahwa banyak faktor yang menjadi faktor lemahnya penguasaan konsep dasar matematika di kelas VII MTs Ex Pga UNIVA Medan. Faktor-faktor tersebut ialah siswa yang beranggapan bahwa matematika sangat sulit dalam matematika, metode yang digunakan guru masih bersifat monoton, dan juga kurangnya keterlibatan siswa dalam proses belajar mengajar.

Cara mengajar guru yang bersifat monoton dan tidak bervariasi juga membuat siswa mempunyai persepsi bahwa matematika sulit dipelajari. Hasilnya tingkat kemampuan pemecahan masalah siswa terhadap matematika sangat kecil.

⁵ Himmatul Ulya, 2015, *Hubungan Gaya Kognitif Dengan Kemampuan Pemecahan Masalah Matematika Siswa*, Jurnal konseling, Vol. 1 No. 2, ISSN 2460-1187, hal. 2.

Pembelajaran dengan belajar berbasis kooperatif (*cooperative learning*) tipe TAI diyakini sebagai praktik pedagogis untuk meningkatkan proses pembelajaran, gaya berpikir tingkat tinggi, perilaku sosial, sekaligus kepedulian terhadap siswasiswa yang memiliki latar belakang kemampuan, penyesuaian dan kemampuan memenuhi tujuan yang berbeda-beda. Termasuk juga dalam hal kemampuan pemecahan masalah.

Problem Based Learning adalah pembelajaran dengan ciri utama pengajuan pertanyaan atau masalah, memusatkan pada keterkaitan antar disiplin, penyelidikan autentik, kerjasama, dan menghasilkan karya atau hasil peragaan. Model pembelajaran Problem Based Learning berusaha membantu siswa menjadi pelajar yang mandiri dan otonom. Pada model pembelajaran ini, peran guru adalah mengajukan masalah, mengajukan pertanyaan, memfasilitasi penyelidikan siswa, dan mendukung pembelajaran siswa.

Berdasarkan latar belakang masalah maka peneliti tertarik melakukan penelitian dengan judul, yaitu "Perbedaan Kemampuan Pemecahan Masalah Matematika Siswa Melalui Model *Problem Based Learning* dan Model Kooperatif *Team Assisted Individualization* di Kelas VII MTs Ex Pga UNIVA Medan".

B. Identifikasi Masalah

Berdasarkan latar belakang masalah di atas, maka dapat di identifikasi masalah sebagai berikut :

- 1. Rendahnya kemampuan pemecahan masalah matematika siswa.
- 2. Metode pembelajaran yang digunakan terlalu monoton.

3. Kurangnya keterlibatan siswa dalam proses belajar mengajar.

C. Batasan Masalah

Beberapa permasalahan yang telah teridentifikasi dapat dikatakan suatu permasalahan yang cukup luas dan kompleks. Agar penelitian tidak terlalu luas, maka masalah pada penellitian dibatasi hanya pada Perbedaan Kemampuan Pemecahan Masalah Matematika Siswa Melalui Model *Problem Based Learning* dan Model Kooperatif *Team Assisted Individualization* di Kelas VII MTs Ex Pga UNIVA Medan "

D. Rumusan Masalah

Berdasarkan masalah di atas, adapun yang menjadi rumusan masalah dalam penelititan ini adalah:

- 1. Bagaimana tingkat kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan model pembelajaran *Problem Based Learning* pada materi segitiga?
- 2. Bagaimana tingkat kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan model pembelajaran TAI(Team Assisted Individualization) pada materi segitiga?
- 3. Apakah terdapat perbedaan tingkat kemampuan pemecahan masalah siswa yang diajar dengan menggunakan model pembelajaran *Problem Based Learning* dan model pembelajaran *TAI(Team Assisted Individualization)?*

E. Tujuan Penelitian

Adapun tujuan penelitian ini adalah:

- Untuk mengetahui tingkat kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan model pembelajaran *Problem Based* Learning.
- 2. Untuk mengetahui tingkat kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan model pembelajaran *TAI(Team Assisted Individualization*.
- 3. Untuk mengetahui perbedaan kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan model pembelajaran *Problem Based Learning* dan yang diajar dengan menggunakan model pembelajaran *TAI*(*Team Assisted Individualization*.

F. Manfaat Penelitian

Sehubungan dengan tujuan penelitian di atas maka penelitian ini diharapkan dapat bermanfaat sebagai berikut:

- Bagi siswa, untuk dapat menimbulkan rasa senang dan nyaman dalam belajar matematika sehingga prestasi siswa dapat meningkat.
- 2. Bagi guru, sebagai bahan pertimbangan dalam memilih model pembelajaran yang baik untuk meningkatkan kemampuan penalaran matematika dan minat siswa.
- 3. Bagi peneliti, sebagai bahan masukan sebagai calon guru.
- 4. Bahan informasi dan sumbangan pemikiran bagi pembaca dan calon peneliti selanjutnya untuk dapat menyempurnakan hasil penelitiannya.

BAB II

LANDASAN TEORITIS

A. KERANGKA TEORI

1. Pengertian Pembelajaran

Kata pembelajaran mengandung arti proses membuat orang melakukan proses belajar sesuai dengan rancangan.⁶ Pembelajaran pada hakekatnya merupakan proses interaksi antara siswa dengan lingkungannya, sehingga terjadi perubahan perilaku kearah lebih baik. Selama proses pembelajaran, tugas guru yang paling utama adalah mengkondisikan lingkungan belajar agar menunjang terjadinya perubahan perilaku bagi siswaNgalimun mengatakan bahwa perubahan tersebut meliputi: a) Intensional. Intensional adalah perubahan yang terjadi karena pengalaman atau kegiatan belajar tersebut dilakukan dengan keadaan sadar.b) Positif-Aktif. Positif aktif adalah perubahan yang bermanfaat sesuai dengan keinginan siswa itu sendiri dan menghasilkan sesuatu yang baru dan itu lebih baik dari yang sebelumnya. c) Efektif Fungsional. Efektif fungsional adalah perubahan yang memberi manfaat bagi siswa dan perubahan itu relatif tetap dan dapat dimanfaatkan setiap kali dibutuhkan.⁷

Perubahan sebagai hasil proses belajar dapat ditunjukkan dalam berbagai bentuk. Seperti kecakapan, kebiasaan, sikap, penerimaan atau penghargaan. Perubahan tersebut dapat meliputi keadaan dirinya, pengetahuan atau perbuatannya. Jadi orang yang sudah belajar dapat merasakan perbedaan sebelum dan sesudah belajar.⁸

⁶ Ngalimun, 2017, Strategi Pendidikan, Yogyakarta: Parama Ilmu, hal. 44.

⁷ Loc.cit, hal. 45

⁸ Loc.cit, hal. 44-45.

Pembelajaran perlu memberdayakan semua potensi peserta didik untuk menguasai kompetensi yang diharapkan. Pemberdayaan diarahkan untuk mendorong pencapaian kompetensi dan perilaku khusus supaya setiap individu mampu menjadi pembelajar sepanjang hayat dan mewujudkan masyarakat belajar.

Dari penjelasan diatas dapat disimpulkan bahwa pembelajaran adalah proses interaksi yang menghasilkan suatu perubahan meliputi afektif, kognitif dan psikomotorik.

2. Model Pembelajaran

Model pembelajaran meliputi suatu model pembelajaran yang luas dan menyeluruh. Konsep model pembelajaran lahir dan berkembang dari pakar psikologi dengan pendekatan dalam setting eksperimen yang dilakukan. Konsep model pembelajaran untuk pertama kalinya dikembangkan oleh Bruce dan koleganya.

Model pembelajaran adalah suatu desain yang menggambarkan proses rincian dan penciptaan situasi lingkungan yang memungkinkan siswa berinteraksi sehingga terjadi perubahan atau perkembangan pada diri siswa. ¹⁰ Model pembelajaran menurut Joyce dan Weil dalam Trianto adalah suatu perencanaan atau suatu pola yang dipergunakan sebagai dalam merencanakan pembelajaran di

Sofan Amri, 2013, *Pengembangan Dan Model Pembelajaran Dalam Kurikulum 2013*, Jakarta: Prestasi Pustakaraya, hal. 4.

-

⁹ Wina Sanjaya, 2015, *Kurikulum Dan Pembelajaran*, Jakarta: Prenadamedia Group, hal. 215.

kelas dan pembelajaran tutorial dan untuk menentukan perangkat-perngkat pembelajaran seperti buku, film, komputer, kurikuler, dan lain-lain.¹¹

Menurut Arends dalam Agus Suprijono, model pembelajaran mengacu pada pendekatan yang akan digunakan, termasuk di dalamnya tujuan-tujuan pembelajaran,tahap-tahap dalam kegiatan pembelajaran, lingkungan pembelajaran, dan pengelolaan kelas.¹²

Ismail dalam Amri menyatakan istilah model pembelajaran mempunyai empat ciri khusus yaitu:

- a. Rasional teoritik yang logis disusun oleh perancangnya.
- b. Tujuan pembelajara yang akan dicapai.
- c. Tingkah laku mengajar yang diperlukan agar model tersebut dapat dilaksanakan secara berhasil.
- d. Lingkungan belajar yang diperlukan agar tujuan pembelajaran itu tercapai. 13

Menurut Jhonson dalam Trianto, untuk mengetahui kualitas model pembelajaran harus dilihat dari dua aspek yaitu proses dan produk. Aspek proses mengacu kepada apakah pembelajaran mampu menciptakan situasi belajar yang menyenangkan serta mendorong siswa untuk aktif belajar dan berpikir kreatif. Aspek produk mengacu kepada apakah pembeajaran mampu mencapai tujuan

.

¹¹ Trianto, 2014, Model Pembelajaran Terpadu Konsep, Strategi Dan Implementasinya Dalam Kurikulum Tingkat Satuan Pendidikan (KTSP), Jakarta: Bumi Aksara, hal.53-54.

¹² Agus Suprijono, 2010, *Cooperatif Learning Teori dan Aplikasi Paikem*. Yogyakarta: Pustaka Belajar, hal. 46.

¹³ Sofan Amri, *op.cit*, hal. 4-5.

yaitu meningkatkan kemampuan siswa dengan standar atau kompetensi yang ditentukan.¹⁴

Dalam macam-macam model pembelajaran ada yang dinamakan dengan model pembelajaran kooperatif. Model pembelajaran kooperatif sangat menekan terhadap keaktifan siswa dalam belajar. Penerapan model pembelajaran ini menekankan pada kerjasama dalam kelompok-kelompok kecil. Biasanya kerjasama dilakukan dalam menguasai materi pelajaran yang awalnya diberikan oleh guru.

Pembelajaran kooperatif merupakan model pembelajaran dengan menggunakan sistem pengelompokan/tim kecil yaitu antara empat sampai enam orang yang memiliki kemampuan akademik, jenis kelamin, ras atau suku yang berbeda.¹⁵

Menurut Henson dan Eller dalam Haidir mengatakan bahwa, model pembelajaran kooperatif learning adalah bentuk kerjasama yang dilakukan peserta didik untuk mencapai tujuan bersama. Dalam model pembelajaran kooperatif, guru lebih berperan sebagai fasilitator yang berfungsi sebagai jembatan penghubung ke arah pemahaman yang lebih tinggi, dengan catatan siswa sendiri. Menurut Piaget dan Vigotsky dalam Effendi, adanya hakikat sosial dari sebuah proses belajar dan juga tentang penggunaan kelompok-kelompok belajar dengan kemampuan anggotanya yang beragam, sehingga terjadi perubahan konseptual. 17

¹⁴ Trianto, op.cit, hal.55.

¹⁵ Hamdayama, 2014, *Model dan Metode Pembelajaran Kreatif Dan Berkarakter*, Bogor: Ghalia Indonesia, hal. 64.

¹⁶ Haidir, 2012, *Strategi Pembelajaran*, Medan: Perdana Publishing, hal. 125.

¹⁷ Effendi Manalu, 2016, Strategi Belajar Mengajar Dari Didaktik Metodik Modern Dengan Menumbuh Kembangkan Kognitif Tingkat Tinggi, Sikap, Dan Keterampilan Kreatif, Medan: Universitas Negeri Medan, hal. 194.

Para ahli telah menunjukkan bahwa pembelajaran kooperatif dapat meningkatkan kinerja siswa dalam tugas-tugas akademik, unggul dalam membantu siswa dalam memahami konsep yang sulit, dan membantu siswa dalam menumbuhkan kemampuan berpikir kritis.

Hal ini terdapat dalam surah Al- Ma'idah ayat 2, yang berbunyi :

Artinya:

"Dan tolong-menolonglah kamu dalam (mengerjakan) kebajikan dan takwa, dan jangan tolong-menolong dalam berbuat dosa dan pelanggaran. Dan bertakwalah kamu kepada Allah, sesungguhnya Allah amat berat siksa-Nya". ¹⁸

Dari ayat di atas dapat diketahui bahwa sebagai umat islam kita diwajibkan melakukan tolong menolong dalam kebaikan. Hal ini sesuai dengan model pembelajaran kooperatif dimana siswa dianjurkan tolong-menolong dalam memahami hal yang berkaitan dengan materi yang diberikan oleh guru. Guru sebagai fasilitator juga membantu siswa dengan arahan dan bimbingan dalam menguasai materi yang ia berikan.

Hal ini juga sesuai dengan Hadits yang diriwayatkan Imam Muslim, yaitu:

Artinya:

" perhatikanlah anak-anak kamu dan bentuklah budi pekertinya sebaikbaiknya"

¹⁸Al-Imran, Qs. Al Maidah 5:2, Bintang Indonesia. Jakarta.

Pembelajaran kooperatif akan efektif digunakan apabila:

- Guru menekankan pentingnya usaha bersama disamping usaha secara individual.
- 2) Guru menghendaki pemerataan perolehan hasil dalam belajar.
- 3) Guru ingin menanamkan tutor sebaya atau belajar melalui teman sendiri.
- 4) Guru menghendaki adanya pemerataan partisipasi aktif siswa
- 5) Guru menghendaki kemampuan siswa dalam memecahkan masalah berbagai permasalahan¹⁹

Tujuan dari model pembelajaran kooperatif learning adalah untuk mengajarkan kepada siswa keterampilan kerja sama dan kolaborasi. Keterampilan ini sangat penting untuk dimiliki di dalam masyarakat di mana banyak kerja orang dewasa sebagian besar dilakukan dalam organisasi yang saling bergantung sama lain dan di mana masyarakat secara budaya semakin beragam.²⁰

Hal ini sejalan dengan Hadits yang diriwayatkan oleh At tirmidzi dan Abu daud :

عَنْ اَبِيْ هُرَيْرَ ةَ رَضِيَ اللهُ عَنْهُ قالَ : قَالَ رَسُوْ لُ اللهِ صَلَّى اللهُ عَلَيْهِ وَسَلَّمَ: اللهُ عَلْيهِ وَسَلَّمَ: اللهُ عَلْيهِ وَسَلَّمَ: اللهُ سُنَتْ اللهُ مُؤْتَمَنٌ.

Artinya: "Dari Abu Hurairah ra. Berkata :Rasulullah SAW bersabda" Musyawarah adalah dapat di percaya". (HR. At tirmidzi dan Abu daud) ²¹

¹⁹ Effendi Manalu, Op.Cit., hal.196.

²⁰ Rusman, 2014, *Model-Model Pembelajaran Mengembangkan Profesionalisme Guru*, Jakarta: Rajagrafindo Persada, hal.210.

²¹ Moh. Zuhri dkk, (1992), *Terjemah Sunan At-Tirmidzi Jilid 4*, Semarang: CV Asy-Syifa, hal.278

Sofan Amri juga menyatakan ada enam tahapan atau langkah yang akan dilakukan jika pembelajaran menggunakan model pembelajaran kooperatif learning. Langkah-langkah tersebut akan diperlihatkan oleh tabel berikut:²²

Tabel 2.1 Langkah-langkah Pembelajaran Kooperatif

No	Langkah-Langkah	Peran Guru
1	Menyampaikan tujuan dan memotivasi siswa	Guru menyampaikan tujuan pembelajaran yang ingin dicapai dan memberi motivasi siswa agar dapat belajar dengan aktif dan kreatif
2	Menyajikan informasi	Guru menyajikan informasi kepada siswa dengan cara demonstrasikan atau lewat bahan bacaan.
3	Mengorganisasikan siswa dalam kelompok- kelompok	Guru menjelaskan kepada siswa bagaimana caranya membentuk kelompok belajar dan membantu setiap kelompok agar melakukan transisi secara efisien.
4	Membimbing kelompok bekerja dan belajar.	Guru membimbing kelompok belajar pada saat mereka mengerjakan tugas- tugas.
5	Evaluasi	Guru mengevaluasi hasil belajar tentang materi yang dipelajari dan juga terhadap presentasi hasil kerja masing-masing kelompok.
6	Memberi penghargaan	Guru mencari cara-cara untuk menghargai upaya atau hasil belajar individu maupun kelompok.

Jadi dapat disimpulkan bahwa pembelajaran kooperatif adalah pembelajaran dengan membentuk kelompok kecil yang heterogen yang dilakukan untuk mencapai tujuan bersama dan agar semua siswa aktif dalam kegiatan

²² Sofan Amri, op.cit, hal.8

pembelajaran. Selama bekerja dalam kelompok, tugas anggota kelompok adalah mencapai ketuntasan materi yang disajikan oleh guru, dan saling membantu teman sekelompoknya untuk mencapai ketuntasan pembelajaran.

Kelebihan model pembelajaran kooperatif yaitu:

a) Meningkatkan harga diri tiap individu. b) penerimaan terhadap perbedaan individu yang lebih besar sehingga konflik antarpribadi berkurang. c) Sikap apatis berkurang. d) pemahaman yang lebih mendalam dan retensi atau penyimpanan lebih lama. e) Meningkatkan kebaikan budi, kepekaan dan toleransi. f) cooperative learning dapat mencegah keagresifan dalam sistem kompetisi dan keterasingan dalam sistem individu tanpa mengorbankan aspek kognitif. g) meningkatkan kemajuan belajar. h) meningkatkan kehadiran peserta dan sikap lebih positif. i) menambah motivasi dan percaya diri. j) menambah rasa senang berada di tempat belajar serta menyenangi teman sekelasnya. k) Mudah diterapkan dan tidak mahal²³

Kelemahan model pembelajaran kooperatif adalah:

a) Guru akan khawatir akan ada kekacauan di kelas. b) perasaan was-was pada anggota kelompok akan hilangnya karakteristik atau keunikan pribadi mereka karena harus menyesuaikan diri dengan kelompok. c) Banyak peserta takut bahwa pekerjaan tidak akan terbagi rata dan akan mengakibatkan bahwa ada satu orang yang harus mengerjakan seluruh pekerjaan tersebut²⁴

²³ Aris Shoimin, 2016, *68 Model Pembelajaran Inovatif Dalam Kurikulum 2013*, Yogyakarta: Ar-Ruzz Media, hal. 48.

²⁴ Loc.cit, 48

3. Model Problem Based Learning (PBL)

a) Pengertian Model Problem Based Learning(PBL)

PBL merupakan suatu model pembelajaran inovatif yang memberikan kondisi belajar aktif kepada siswa. Pengertian PBL dalam Ngalimun, yaitu model pembelajaran yang melibatkan siswa untuk memecahkan suatu masalah melalui tahap-tahap metode ilmiah sehingga siswa mempunyai pengetahuan yang berhubungan dengan masalah tersebut dan sekaligus mempunyai keterampilan dalam memecahkan masalah.²⁵

Barrow dalam Miftahul, mendefenisikan PBL sebagai pembelajaran yang diperoleh melalui proses menuju pemahaman akan resolusi suatu masalah. Masalah tersebut ditemukan pertama dalam proses pembelajaran.²⁶

Sementara Finkle dan Torp dalam Aris, menyatakan bahwa PBL merupakan pengembangan kurikulum dan sistem pengajaran yang mengembangkan secara simultan strategi pemecahan masalah dan dasar-dasar pengetahuan dan keterampilan dengan menempatkan para peserta didik dalam peran aktif sebagai pemecah permasalahan sehari-hari yang tidak terstruktur dengan baik.²⁷

Sejalan dengan itu Ibrahim dan Nur dalam Rusman, menyatakan bahwa PBL merupakan suatu pendekatan pembelajaran yang digunakan untuk merangsang berpikir tingkat tinggi siswa dalam situasi yang berorientasi pada

²⁵ Ngalimun, *op.cit*, hal. 172.

²⁶ Miftahul Huda, 2014, *Model-Model Pengajaran dan Pembelajaran*, Yogyakarta: Pustaka Belajar, hal. 271.

²⁷ Aris Shoimin, 2016, *68 Model Pembelajaran Inovatif Dalam Kurikulum 2013*, Yogyakarta: Ar-Ruzz Media, hal. 130.

masalah dunia nyata, termasuk di dalamnya belajar bagaimana belajar.²⁸ Berdasarkan beberapa pendapat para ahli tersebut dapat disimpulkan bahwa PBL adalah pembelajaran yang diorientasikan terhadap pemecahan masalah yang dikaitkan dengan masalah yang dihadapi sehari-hari. Dalam PBL diharapkan siswa dapat membentuk pengetahuan atau konsep baru dari informasi yang didapatnya, sehingga kemampuan berpikir siswa benar-benar terlatih.

b) Karakteristik pembelajaran berbasis masalah

Menurut Rusman ada beberapa karakteristik pembelajaran berbasis masalah adalah sebagai berikut:

- 1) Permasalahan menjadi *starting point* dalam belajar.
- Permasalahan yang diangkat adalah permasalahan yang ada di dunia nyata yang tidak terstruktur.
- 3) Permasalahan membutuhkan persfektif ganda.
- 4) Permasalahan, menantang pengetahuan yang dimiliki oleh siswa, sikap, dan kompetensi yang kemudian membutuhkan identifikasi kebutuhan belajar dan bidang baru dalam belajar.
- 5) Belajar pengarahan diri menjadi hal yang utama.
- 6) Pemanfaatan sumber pengetahuan yang beragam, penggunaannya, dan evaluasi sumber informasi merupakan proses yang esensial dalam PBM.
- 7) Belajar adalah kolaboratif, komunikatif, komunikasi dan kooperatif.

²⁸ Rusman, 2014, *Model-Model Pembelajaran Mengembangkan Profesionalisme Guru*, Jakarta: Rajagrafindo Persada, hal.241.

- 8) Pengembangan keterampilan inquiry dan pemecahan masalah sama pentingnya dengan penguasaan isi pengetahuan untuk mencari solusi dari sebuah permasalahan.
- Keterbukaan proses dalam PBM meliputi sintesis dan integrasi dari sebuah proses belajar.
- 10) PBM melibatkan evaluasi dan *review* pengalaman siswa dan proses belajar.²⁹

Sedangkan Berdasarkan teori yang dikembangkan Barrow, sebagaimana dikutip oleh Shoimin menjelaskan lima karakteristik PBL yang meliputi :

1) Learning Is Student-Centered

Proses pembelajaran dalam PBL lebih menitikberatkan kepada siswa sebagai orang belajar. Oleh karena itu, PBL didukung juga oleh teori kontruktivisme dimana siswa di dorong untuk dapat mengembangkan pengetahuannya sendiri.

2) Authentic Problem Form The Organizing Focus For Learning Masalah yang disajikan kepada siswa adalah masalah yang otentik sehingga siswa mampu dengan mudah memahami masalah tersebut serta dapat menerapkannya dalam kehidupan profesionalnya nanti.

3) New Information Is Acquired Through Self-Directed Learning

Dalam proses pemecahan masalah mungkin saja siswa belum mengetahui
dan memahami semua pengetahuan prasyaratnya sehingga siswa berusaha
untuk mencari sendiri melalui sumbernya, baik dari buku atau informasi
lainnya.

²⁹ *Ibid*, hal.232-233.

4) Learning Occurs In Small Groups

Agar terjadi interaksi ilmiah dan tukar pemikiran dalam usaha membangun pengetahuan secara kolaboratif PBL dilaksanakan dalam kelompok kecil. Kelompok yang dibuat menuntut pembagian tugas yang jelas

Teachers Act As Facilitators

Pada pelaksanaan PBM, guru hanya berperan sebagai fasilitator. Meskipun begitu guru harus selalu memantau perkembangan aktivitas siswa dan mendorong mereka agar mencapai target yang hendak dicapai.³⁰

c) Langkah-langkah Problem Based Learning

Menurut Amri, ada lima fase dalam model PBL, yaitu:

- 1) Orientasi siswa kepada masalah.
- 2) Mengorganisasikan siswa untuk belajar.
- 3) Membimbing penyelidikan individual maupun kelompok.
- 4) Mengembangkan dan menyajikan hasil karya.
- 5) Menganalisis dan mengevaluasi proses pemecahan masalah.³¹

Dalam fase-fase tersebut juga disertakan kegiatan guru seperti yang akan ditunjukkan dalam tabel berikut:³²

Tabel 2.2 **Indikator PBL**

Fase	Indikator	Kegiatan guru
1	Orientasi siswa kepada masalah	Guru menjelaskan tujuan pembelajaran, menjelaskan logistik yang diperlukan, memotivasi siswa terlibat aktif dan kreatif dalam aktivitas pemecahan masalah yang dipilihnya.
2	Mengorganisasikan siswa	Guru membantu siswa mendefenisikan

³⁰ Aris Shoimin, *Op.cit*, hal. 130. Sofan Amri, *Op.cit*, hal. 13.

³² *Loc.cit*, hal. 13.

	untuk belajar	dan mengorganisasikan tugas belajar		
		yang berhubungan dengan masalah		
		tersebut.		
3	Membimbing penyelidikan	Guru mendorong siswa untuk		
	individual maupun	mengumpulkan informasi yang sesuai		
	kelompok	dan melaksanakan eksperimen untuk		
		mendapatkan penjelasan dan		
		pemecahan masalah.		
4	Mengembangkan dan	Guru membantu siswa dalam		
	menyajikan hasil karya.	merencanakan dan menyiapkan karya		
		yang sesuai seperti laporan, video, dan		
		model dan membantu mereka untuk		
		berbagi tugas dengan temannya.		
5	Menganalisis dan	Guru membantu siswa untuk melakukan		
	mengevaluasi proses	refleksi atau evaluasi terhadap		
	pemecahan masalah	penyelidikan mereka dan proses-proses		
		yang mereka gunakan.		

d) Kelebihan dan kelemahan Model Probem Based Learning

Kelebihan model *Problem Based Learning*:

- Siswa didorong untuk memiliki kemampuan dalam memecahkan masalah dalam situasi nyata.
- 2) Siswa memiliki kemampuan membangun pengetahuannya sendiri melalui aktivitas belajar.
- 3) Pembelajaran berfokus pada masalah sehingga materi yang tidak ada hubungannya tidak perlu dipelajari oleh siswa.
- 4) Terjadi aktivitas ilmiah pada siswa melalui kerja kelompok.
- 5) Siswa terbiasa menggunakan sumber-sumber pengetahuan, baik dari perpustakaan, internet, wawancara, dan observasi.
- 6) Siswa memiliki kemampuan menilai kemajuan belajarnya sendiri.
- Siswa memiliki kemampuan untuk melakukan komunikasi ilmiah dalam kegiatan diskusi atau presentasi hasil pekerjaan mereka.

8) Kesulitan belajar siswa secara individual dapat diatasi melalui kerja kelompok dalam bentuk *peer teaching*. ³³

Kelemahan model Problem Based Learning:

- PBL tidak dapat diterapkan untuk setiap materi pelajaran. PBL lebih cocok untuk pembelajaran yang menunjang kemampuan tertentu yang kaitannya dengan pemecahan masalah.
- Dalam sutau kelas yang memililki tingkat keragaman siswa yang tinggi akan terjadi kesulitan dalam pembagian tugas.

e) Teori pendukung yag melandasi model pembelajaran PBL

1) Teori belajar bermakna dari David Ausubel.

Belajar bermakna merupakan proses belajar di mana informasi baru dihubungkan dengan struktur pengertian yang sudah dimiliki seseorang yang sedang belajar. Kaitan dengan PBL adalah dalam hal mengaitkan informasi baru dengan struktur kognitif yang telah dimiliki oleh siswa.

2) Teori belajar Vigotsky.

Vigotsky meyakini bahwa interaksi sosial dengan teman lain memacu terbentuknya ide baru dan memperkaya perkembangan intelektual siswa. Kaitan dengan PBL dalam hal mengaitkan informasi baru dengan struktur kognitif yang telah dimiliki oleh siswa melalui kegiatan belajar dalam interaksi sosial dengan teman lain.

³³ Aris Shoimin, *Op.cit*, hal.132.

³⁴ *Loc.cit*, hal. 132.

3) Teori belajar Jerome S.Brunner.

Teori ini berpendapat bahwa siswa harus menemukan kembali, bukan menemukan yang sama sekali benar-benar baru. Belajar penemuan sesuai dengan pencarian pengetahuan secara aktif oleh manusia, dengan sendirinya memberikan hasil yang lebih baik, berusaha sendiri mencari pemecahan masalah serta didukung oleh pengetahuan yang menyertainya, serta menghasilkan pengetahuan yang benar-benar bermakna.³⁵

4. Model pembelajaran kooperatif *Team Assisted Individualization (TAI)* a) Pengertian model pembelajaran kooperatif Team Assisted Individualization (TAI)

TAI memiliki dasar pemikiran yaitu untuk mengadaptasi pembelajaran terhadap perbedaan individual berkaitan dengan kemampuan maupun pencapaian prestasi siswa.³⁶ Suyitno dalam Dita, menyatakan bahwa Pembelajaran *Team* Assisted Individualization adalah salah satu metode pembelajaran kooperatif yang mudah diterapkan, melibatkan aktivitas seluruh siswa tanpa harus ada perbedaan status, melibatkan peran siswa sebagai tutor sebaya dan mengandung unsur permainan dan reinforcement. Aktivitas belajar dalam metode pembelajaran Team Assisted Individualization melibatkan pengakuan tim dan tanggung jawab kelompok untuk pembelajaran individu anggota.³⁷

Slavin dalam Muhammad menyatakan bahwa model pembelajaran kooperatif tipe TAI mengkombinasikan pembelajaran kooperatif

³⁵ Rusman, Op.cit, hal.244.

³⁶ Aris Shoimin, *Op. cit*, hal. 200.

³⁷ Dita Amelia Putri, 2018, Peningkatan Kemampuan Berpikir Kritis Siswa Melalui Metode Pembelajaran Team Games Tournament Dan Team Assisted Individualization, Jurnal Manajerial Vol. 3 No.4 Januari 2018, ISSN: 1412 - 6613, E-ISSN: 2527 – 4570, hal. 7.

pembelajaran individual guna mengatasi kesulitan pembelajaran secara individual dengan mengangkat hasil belajar individual dalam diskusi kelompok untuk didiskusikan oleh anggota kelompok dan semua anggota kelompok bertanggung jawab atas keseluruhan jawaban sebagai tanggung jawab seluruh anggota kelompok. Model ini dirancang untuk mengatasi kesulitan belajar siswa secara individual dalam kelompok serta dapat meningkatkan aktifitas belajar siswa dalam kelas. Tidak hanya itu, dengan menggunakan tipe TAI ini semangat kebersamaan dan sosial siswa dapat ditumbuhkan.³⁸

b) Langkah-langkah model pembelajaran TAI

Pembelajaran Team Assisted Individualization (TAI) memiliki delapan komponen antara lain:

- 1) *Team*, yaitu pembentukan kelompok heterogen terdiri 4-5 orang.
- 2) Placement test, yaitu pemberian tes pada permulaan pelaksanaan program.
- 3) *Student creative*, melaksanakan tugas dalam suatu kelompok dengan menciptakan situasi dimana keberhasilan individu ditentukan atau dipengaruhi oleh keberhasilan kelompoknya.
- 4) *Team study*, yaitu guru mulai mengajar pelajaran pertama, selanjutnya para peserta didik diberikan tempat untuk memulai dalam mengerjakan dalam kelompok mereka kemudian guru memberikan bantuan secara individual kepada peserta didik yang membutuhkan.

_

³⁸ Samsiah Muhammad, 2017, Penerapan Model Pembelajaran Kooperatif Tipe TAI (Team Assisted Individualization) Untuk Meningkatkan Hasil Belajar Siswa Pada Materi Persamaan Kuadrat Di Kelas X MIPA 2 SMA Negeri 5 Palu, Jurnal Aksioma, Volume 6 Nomor 2, September 2017. ISSN: 1412-4505, hal. 163.

- 5) *Team scorers and team recognition*, yaitu pemberian skor terhadap hasil kerja tim. Skor ini didasarkan pada jumlah rata-rata unit yang bisa dicakupi oleh tiap anggota tim dan memberikan kriteria penghargaan terhadap tim.
- 6) *Teaching group* yaitu memberikan materi secara singkat dari guru menjelang pemberian tugas kelompok
- 7) Fact test, yaitu pelaksanaan tes berdasarkan fakta yang di peroleh peserta didik.
- 8) *Whole-class unit*, yaitu pemberian rangkuman materi oleh guru serta serangkaian latihan di akhir waktu pembelajaran dengan strategi penyelesaian masalah.³⁹

c) Kelebihan dan kelemahan model pembelajaran kooperatif *Team* Assisted Individualization (TAI)

Kelebihan model kooperatif TAI, yaitu:

- 1) Siswa yang lemah dapat terbantu dalam menyelesaikan masalahnya.
- Siswa yang pandai dapat mengembangkan kemampuan dan keterampilannya.
- 3) Adanya tanggung jawab dalam kelompok dalam menyelesaikan permasalahannya.
- 4) Siswa diajarkan bagaimana bekerja sama dalam suatu kelompok.
- 5) Mengurangi kecemasan.
- 6) Menghilangkan perasaan terisolasi dan panik.
- 7) Menggantikan bentuk persaingan dengan saling bekerja sama.

³⁹ Aris Shoimin, *Op.cit*, hal. 201.

- 8) Melibatkan siswa untuk aktif dalam proses belajar.
- 9) Mereka dapat berdiskusi, berdebat, atau menyampaikan gagasan sampai benar-benar dipahami.
- 10) Siswa memiliki rasa peduli dan tanggung jawab terhadap teman lain dalam proses belajarnya.
- 11) Siswa dapat menghargai perbedaan kemampuan.

Kelemahan model pembelajaran kooperatif TAI, yaitu:

- 1) Tidak ada persaingan antar kelompok
- 2) Siswa yang lemah mungkin lebih bergantung kepada siswa yang pandai.
- 3) Terhambatnya cara berpikir siswa yang mempunyai kemampuan lebih terhadap siswa yang kurang.
- 4) Memerlukan periode lama.
- Sesuatu yang harus dipelajari dan dipahami belum seluruhnya dicapai siswa.
- 6) Bila kerjasama tidak dapat dilakukan dengan baik, yang akan bekerja hanyalah beberapa siswa yang pandai dan aktif saja.
- 7) Siswa yang pandai akan keberatan karena nilai yang diperoleh ditentukan oleh prestasi atau pencapaian kelompok.⁴⁰

⁴⁰ *Ibid*, hal.202-203.

d) Teori pendukung model pembelajaran *Team Assisted Individualization*

Teori Vygotsky menekankan pentingnya konteks sosial untuk belajar dan perkembangan. Hal tersebut ia ungkapkan dengan berdalih bahwa seorang dari lahir sampai telah berhubugan secara sosial, secara budaya, dan menurut sejarah mengorganisir paraktik-praktik dan bahwa tidak ada satupun dapat terpisah dari konteks sosial. Menurut Vigotsky perolehan pengetahuan dan perkembangan kognitif seseorang sesuai dengan teori sosiogenesis. Dimensi kesadaran sosial bersifat primer, sedangkan dimensi individualnya bersifat derivative atau merupakan turunan daan bersifat sekunder. Artinya pengetahuan dan perkembangan kognitif individual berasal dari sumber-sumber sosial di luar dirinya. 41

5. Kemampuan Pemecahan Masalah Matematika

Hartono mengatakan bahwa, masalah merupakan bagian dari kehidupan manusi baik bersumber dari dalam diri maupun lingkungan sekitar.hampir setiaphari manusia berhadapan dengan suatu masalah yang perlu dicari jalan keluarnya.⁴²

Masalah bersifat relatif, karena setiap masalah yang dialami oleh seseorang belum tentu menjadi masalah bagi orang lain. Pemecahan masalah pada dasarnya adalah suatu proses yang dilalui seseorang untuk menyelesaikan masalah yang sedang dialaminya sampai masalah itu tidak menjadi masalah lagi.

⁴¹ Masni."Implementasi Pendekatan Contextual Teaching and Learning dalam Pembelajaran Matematika Pada Materi Pecahan". Jurnal Prosiding Seminar Nasional Volume 02, Nomor 1 ISSN 2443-1109, hal 368.

⁴² Yusuf Hartono, 2014, *Matematika; Strategi Pemecahan Masalah*, Yogyakarta : Graha ilmu, hal. 1.

Jadi suatu pertanyaan yang awalnya menjadi permasalahan, jika sudah dapat diselesaikan baik melalui cara kita sendiri atau mencari jawaban melalui buku, maka pertanyaan berubah menjadi bukan masalah. Lester dalam Winarni dan Harmini, juga mengemukakan bahwa masalah adalah suatu situasi dimana seorang individu atau kelompok terbuka untuk melakukan suatu tindakan tetapi tidak ada algoritma yang siap dan dapat diterima sebagai suatu metode pemecahannya. Heriotakan suatu metode

Menurut Wee dan Kek dalam Minarni masalah adalah sesuatu yang gagal atau tidak bekerja dengan baik. Tetapi bukan itu saja, bagaimana menemukan suatu cara baru atau cara yang lebih baik, menganalisis mengapa sesuatu terjadi, merancang rencana, merupakan masalah. Ketika suatu masalah muncul tidak pernah ada informasi yang cukup untuk melakukan analisis lengkap atau menyelesaikan masalah tersebut, hal ini disebut sebagai *messy* dan *fuzzy*. 45

Sebagian besar ahli pendidikan matematika mengatakan bahwa suatu masalah adalah suatu pertanyaan yang harus dijawab atau direspon. Namun, tidak setiap pertanyaan itu merupakan masalah bisa saja itu hanya soal biasa. Suatu pertanyaan dikatakan masalah jika pertanyaan tersebut mengandung tantangan dan tidak bisa diselesaikan oleh suatu prosedur yang biasa dilakukan yang diketahui pelakunya. Setiap permasalahan harus mempunyai pemecahan masalah. Dalam memecahkan masalah harus menerapkan aturan.

_

⁴³ Harmini dan Winarni, 2016, *Matematika Untuk PGSD*, Bandung : Pt Remaja Rosdakarya, hal. 115.

⁴⁴ *Ibid*, hal. 116.

Ani Minarni, 2012, Pengaruh Pembelajaran Berbasis Masalah Terhadap Kemampuan Pemecahan Masalah Matematis, Prosiding Yogyakarta:MP -92, ISBN: 978-979-16353-8-7, hal. 93.

Uden dan Beaumont dalan Angkotasan mengatakan bahwa siswa dalam pembelajaran dengan belajar berbasis masalah dimungkinkan untuk mencari pemecahan suatu masalah sampai di luar lingkungan sekolah, mengidentifikasi apa yang telah mereka pelajari dan bagaimana mereka dapat belajar dengan baik untuk memecahkan masalah yang diberikan. Siswa perlu tahu bagaimana mengidentifikasi informasi penting yang mereka butuhkan untuk belajar, dimana mendapatkan informasi itu, dan bagaimana menggunakan informasi tersebut untuk memecahkan masalah. Dalam hal ini siswa benar-benar dilatih untuk mandiri. Mereka mengidentifikasi diri sendiri seberapa paham mereka pada masalah tersebut, apa yang harus mereka ketahui agar dapat memecahkan masalah tersebut, metode apa yang akan mereka gunakan, dan bagaimana strategi memecahkan masalah tersebut. Peran guru di sini hanya mengontrol dan memastikan siswa telah bekerja sesuai yang dikehendaki, dan hanya membantu bila benar-benar diperlukan. 46

Siswa tidak akan tertarik untuk belajar memecahkan masalah jika ia tidak tertantang untuk mengerjakannya. Hal ini menunjukkan pentingnya tentangan serta konteks yang ada pada suatu masalah untuk memotivasi para siswa akan berusaha dengan sekuat tenaga untuk memecahkan suatu masalah yang diberikan gurunya jika mereka menerima tantangan yang ada pada masalah tersebut.

Seperti yang dijelaskan dalam qur'an surah al-mujadilah ayat-11, yang berbunyi:

⁴⁶ Nurma Angkotasan, 2013, Model PBL dan Cooperative Learning Tipe TAI Ditinjau Dari Aspek Kemampuan Berpikir Reklektif Dan Pemecahan Masalah Matematika, Jurnal Pythagoras, Volume 8-Nomor 1, Juni 2013, ISSN: 1978-4538, hal.

94.

يَا أَيُّهَا الَّذِينَ آمَنُوا إِذَا قِيلَ لَكُمْ تَفَسَّحُوا فِي الْمَجَالِسِ فَافْسَحُوا يَفْسَحِ اللَّهُ لَكُمْ اللَّذِينَ آمَنُوا مِنْكُمْ وَالَّذِينَ أُوتُوا لَكُمْ اللَّذِينَ آمَنُوا مِنْكُمْ وَالَّذِينَ أُوتُوا لَكُمْ اللَّذِينَ آمَنُوا مِنْكُمْ وَالَّذِينَ أُوتُوا اللَّهُ الْمَاتِ وَاللَّذِينَ الْمَنُوا مِنْكُمْ وَالَّذِينَ أُوتُوا اللَّهُ اللَّذِينَ آمَنُوا مِنْكُمْ وَالَّذِينَ أُوتُوا اللَّهُ اللَّذِينَ آمَنُوا مِنْكُمْ وَاللَّذِينَ أُوتُوا اللَّهُ اللَّذِينَ الْمَنُوا مِنْكُمْ وَاللَّذِينَ أُوتُوا اللَّهُ اللَّذِينَ أَمْنُونَ خَبِيرٌ اللَّهُ اللَّذِينَ أَواللَّهُ اللَّذِينَ أَمْنُونَ خَبِيرٌ اللَّهُ اللَّذِينَ أَمْنُوا اللَّهُ اللَّذِينَ أَمْنُوا مِنْ خَبِيرٌ اللَّهُ اللَّذِينَ أَوْتُوا اللَّهُ اللَّذِينَ أَمْنُوا مِنْ خَبِيرٌ اللَّهُ اللَّذِينَ أَمْنُوا اللَّهُ اللَّذِينَ أَمْنُوا مِنْ خَبِيرٌ اللَّهُ اللَّذِينَ أَمْنُوا اللَّهُ اللَّذِينَ أَمْنُوا اللَّهُ اللَّذِينَ أَمْنُوا مِنْ اللَّهُ اللَّذِينَ الْمَنُوا اللَّهُ اللَّذِينَ أَمْنُوا اللَّهُ اللَّذِينَ اللَّهُ اللَّذِينَ الْمَنُوا اللَّهُ اللَّذِينَ الْمُؤْلُونَ عَلَيْمُ اللَّذِينَ الْمَنُوا اللَّهُ اللَّذِينَ الْمُنُولُ اللَّهُ اللَّذِينَ اللَّذِينَ الْمُثَوالِ الللَّهُ اللَّذِينَ الْمُنُولُ اللَّذِينَ الْمُؤْلُونَ عَلَيْلُ اللَّذِينَ اللَّهُ اللَّذِينَ اللَّهُ اللَّذِينَ اللَّذِينَ اللَّذِينَ اللَّذِينَ الْمُنْ اللَّذِينَ الْمُتُونَ عَلَيْلُونَ اللَّذِينَ الْمُنْكُونَ اللَّذِينَ اللَّذِينَ اللَّذِينَ اللللَّهُ اللَّذِينَ اللللَّهُ اللَّذِينَ اللَّهُ اللَّذِينَ اللَّذِينَ اللَّهُ اللَّذِينَ الللللَّهُ اللَّذِينَ الللللْمُ اللَّهُ اللَّذِينَ الللللْمُ اللَّذِينَ اللللْمُ اللَّهُ اللَّهُ اللَّهُ الللْمُ الللللْمُ اللَّهُ اللَّهُ اللَّهُ اللللْمُ اللْمُ اللْمُ اللْمُ اللْمُ اللَّهُ اللَّهُ اللَّهُ الللللْمُ اللْمُ اللْمُ اللْمُ الللْمُ اللَّهُ اللْمُ اللَّهُ اللللْمُ اللْمُ اللْمُ الللللْمُ اللْمُ الللللْمُ الللللْمُ الللللْمُ اللللْمُ الللللْمُ الللللْمُ اللللْمُ الللللْمُ اللْمُ الللللْمُ الللللْمُ الللللللللْمُ الللللْمُ اللللللْمُ اللللْمُ الللللللْمُ اللللللْمُ الللْمُ اللللْمُ اللللللْمُ الللْمُ الللللْمُ الللللْمُ اللللِمُ الللْمُ الللْمُ ا

Artinya:

"Hai orang-orang beriman apabila dikatakan kepadamu: "Berlapanglapanglah dalam majlis", maka lapangkanlah niscaya Allah akan memberi kelapangan untukmu. Dan apabila dikatakan: "Berdirilah kamu", maka berdirilah, niscaya Allah akan meninggikan orang-orang yang beriman di antaramu dan orang-orang yang diberi ilmu pengetahuan beberapa derajat. Dan Allah Maha Mengetahui apa yang kamu kerjakan". ⁴⁷

Allah SWT mengangkat derajat orang yang berilmu pengetahuan dan mengamalkan ilmu-ilmu yang dimilikinya. Orang yang menuntut ilmu mendapatkan tempat terbaik di sisi Allah SWT dan kewajiban menuntut ilmu itu penting dilakukan setiap pribadi muslim. Menuntut ilmu sangat penting bagi setiap pribadi muslim sebab dengan ilmu pengetahuan yang dimilikinya akan memudahkan baginya jalan ke syurga. Dan Allah selalu memberi petujuk atau jalan keluar kepada manusia dalam menyelesaikan masalah yang dihadapinya.

Dalam kemampuan pemecahan masalah terdapat indikator. Menurut Polya dalam Yarmani, ada 4 indikator dalam kemampuan pemecahan masalah yaitu (1) memahami masalah, (2) merencanakan pemecahan masalah, (3) menyelesaikan masalah sesuai rencana dan (4) memeriksa kembali hasil yag diperoleh.⁴⁸

Menurut NCTM (National counchil teacher mathematics) indikator pemecahan masalah yaitu (1) membangun pengetahuan matematika baru melalui

⁴⁸ Ayu Yarmani, 2013, *Analisis Kemampuan Pemecahan Masalah Matematis siswa Kelas XI MIPA SMa Negeri 1 Kota Jambi*, Jurnal Ilmiah Dikdaya, Jambi: Universitas Batanghari, hal.15.

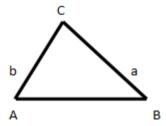
⁴⁷Al-imran, *Q.S. Al-mujadilah* 58:11, Bintang Indonesia, Jakarta.

pemecahan masalah, (2) menerapkan dan menyesuaikan berbagai strategi yang tepat untuk memecahkan masalah, (3) memecahkan masalah yang timbul dalam matematika dan dalam konteks lain, dan (4) memantau dan merefleksikan proses pemecahan masalah matematika.⁴⁹

Russefendy dalam Indarwati mengajukan 5 indikator pemecahan masalah, yaitu: (1) Menyajikan masalah dalam bentuk yang lebih jelas; (2) Menyatakan masalah dalam bentuk operasional; (3) Menyusun hipotesis-hipotesis alternatif dan prosedur kerja; (4) Mengetes hipotesis dan melakukan kerja untuk memperoleh hasilnya; (5) Memeriksa kembali.⁵⁰

Dari beberapa uraian para ahli di atas maka indikator kemampuan pemecahan masalah yang diambil dalam penelitian ini adalah (1) memahami masalah (2) merencanakan pemecahan masalah (3) menyelesaikan masalah sesuai rencana dan (4) memeriksa kembali hasil yang diperoleh.

⁴⁹Himmatul Ulya, 2015, *Hubungan Gaya Kognitif Dengan Kemampuan Pemecahan Masalah Matematika Siswa*, Jurnal Konseling GUSJIGANG, Program Studi Bimbingan Dan Konseling FKIP Universitas Muria Kudus: Vol. 1 No. 2 Tahun 2015


ISSN 2460-1187, hal.2.

Desi Indarwati, 2014, Jurnal Peningkatan Kemampuan Pemecahan Masalah Matematika Melalui Penerapan Problem Based Learning Untuk Siswa Kelas V, Satya Widya, Vol. 30, No.1, hal. 22.

6. Materi keliling dan luas segitiga

a) Keliling segitiga

Keliling suatu bangun datar merupkan jumlah dari panjang sisi-sisi yang membatasinya, sehingga untuk menghitung keliling dari sebuah segitiga dapat ditentukan dengan menjumlahkan panjang dari setiap sisi segitiga tersebut.

Keliling
$$\triangle ABC = AB + BC + AC$$

= $c + a + b$
= $a + b + c$

Jadi, keliling $\triangle ABC$ adalah a + b + c.

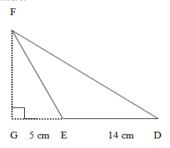
Dari uraian di atas dapat disimpulkan bahwa suatu segitiga dengan panjang sisi a, b dan c kelilingnya adalah:⁵¹

$$K = a + b + c$$

b) Luas segitiga

Secara umum luas segitiga dengan panjang alas a dan tinggi t adalah

$$L = \frac{1}{2} \times a + t$$


⁵¹ Dewi Nuharini dan Tri Wahyuni, 2008, *Matematika Konsep dan Aplikasinya Untuk SMP/Mts Kelas VII*, Jakarta: Usaha Makmur, hal. 246-247.

Keterangan:

- L: Luas
- a: alas
- t: tinggi⁵²

Contoh:

Perhatikan gambar berikut:

Gambar 2.2 Segitiga DEF

Pada ΔDEF di atas diketahui DE=14~cm,~DF=21~cm,~EG=5~cm,~dan~FG=12~cm. Hitunglah keliling dan luas ΔDEF .

Penyelesaian:

Dik:
$$DE = 14 cm$$

$$DF = 21 cm$$

$$EG = 5 cm$$

$$FG = 12 cm$$

Dit: $K \operatorname{dan} L$?

Maka:

$$EF^2 = EG^2 + FG^2$$

 $^{^{52}}$ Dewi Nuharini dan Tri Wahyuni, $ibid.,\, hal.\, 247.$

$$= (5 cm)^{2} + (12 cm)^{2}$$

$$= 25 cm^{2} + 144 cm^{2}$$

$$= 169 cm^{2}$$

$$EF = \sqrt{169 cm^{2}} = 13 cm$$

$$K = DE + EF + DF$$

$$= 14 cm + 13 cm + 21 cm$$

$$= 48 cm$$

$$L = \frac{1}{2} \times DE \times FG$$

$$= \frac{1}{2} \times 14 cm \times 12 cm = 84 cm^{2}$$

Maka keliling ΔDEF adalah 48 cm dan luas ΔDEF adalah 84 cm^2 .

c) Menyelesaikan masalah yang berkaitan dengan keliling dan luas segitiga Contoh:

Sebuah syal berbentuk segitiga sama kaki dengan panjang sisi yang yang sama 12cm dan panjang sisi lainnya 30 cm. Jika tinggi syal tersebut 9 cm, tentukan keliling dan luas syal tersebut.

Penyelesaian:

Dik: Panjang kaki = 12 cm

Panjang alas = 30 cm

Tinggi = 9 cm

Dit: $K \operatorname{dan} L$?

$$K = 12 cm + 12 cm + 30 cm$$

= 54 cm

$$L = \frac{1}{2} \times \text{alas} \times \text{tinggi}$$

$$=\frac{1}{2}\times30\ cm\times9\ cm$$

$$= 135 cm^2$$

Jadi, keliling syal tersebut adalah 54 cm dan luas syal adalah $135 cm^2$.

B. Kerangka Berpikir

Pembelajaran matematika merupakan salah satu sarana untuk mengembangkan kemampuan pemecahan masalah. Kemampuan pemecahan masalah merupakan bagian dalam kurikulum yang harus dikembangkan dan diintegrasikan dalam pembelajaran dan dalam kehidupan sehari-hari. Maka dari itu, masalah yang diberikan kepada siswa juga harus yang berintegrasi dengan kehidupan sehari-hari.

Dalam proses pembelajaran matematika, diharapkan guru dapat memilih model pembelajaran yang tepat dan efektif, yang dengan menggunakan model pembelajaran tersebut dapat meningkatkan kemampuan pemecahan masalah matematika siswa.

Guru memilki peran yang sangat penting yaitu sebagai fasilitator yang membantu siswa dalam meningkatkan kemampuan pemecahan masalah. Tugas guru dalam membantu sisswa menyelesaikan masalahnya adalah harus memiliki pengetahuan yang cukup untuk menyelesaikan soal tersebut agar siswa tidak buntu berpikir misalnya disebabkan oleh bahasanya yang sulit dipahami. Guru juga harus berusaha membangkitkan keinginan pada diri siswa untuk tetap yakin menyelesaikan masalah dan tidak ragu akan jawaban yang sudah diperolehnya.

Rendahnya tingkat kemampuan pemecahan masalah matematika siswa salah satunya disebabkan karena pemilihan model pembelajaran yang tidak tepat. Model *Problem Based Learning* dan *Team Assisted Individualization* merupakan dua model pembelajaran yang dianggap dapat menimbulkan ketertarikan, keaktifan dan kekereatifan siswa sehingga dapat meningkatkan kemampuan pemecahan masalah matematika siswa.

Pada pembahasan sebelumnya telah disebutkan mengenai kedua model pembelajaran tersebut. Sehingga dapat disimpulkan bahwa kedua model pembelajaran diatas memiliki persamaan dalam proses pembelajarannya. Sehingga peneliti ingin mencari tahu apa perbedaan dari kedua model yaitu Model *Problem Based Learning* dan Model Pembelajaran Kooperatif *Team Assisted Individualization* dalam mengetahui kemampuan pemecahan masalah matematika siswa pada materi Segitiga Kelas VII.

C. Penelitian Yang Relevan

1. Nurma Angkotasan. Dengan judul "Model *PBL* dan *Cooperative Learning* Tipe *TAI* Ditinjau dari Aspek Kemampuan Berpikir Reflektif dan Pemecahan Masalah Matematis". Penelitian ini dilaksanakan di SMA Ne-geri 4 dan 5 Kota Ternate pada semester ganjil tahun 2012/2013, pada bulan September sampai dengan November 2012. Hasil dari penelitian ini adalah Tidak terdapat perbedaan keefek-tifan secara signifikan pada kemampuan berpikir reflektif matematis dan kemampuan pemecahan masalah matematis antara siswa yang diajarkan dengan model *problem-based learning* dan model *cooperative learning* tipe *TAI*.

2. Endang Hariyati Efektivitas Model Pembelajaran Kooperatif Tipe *Team Assisted Individualization* (TAI) Dan *Problem Based Learning* (PBL) Pada Prestasi Belajar Matematika Ditinjau Dari *Multiple Intelligences* Siswa Smp Kabupaten Lampung Timur Tahun Pelajaran 2012/2013. Dari Penelitian ini diperoleh bahwa Model pembelajaran kooperatif tipe TAI memberikan prestasi belajar matematika lebih baik dibandingkan model pembelajaran PBL dan konvensional, model pembelajaran PBL menghasilkan prestasi belajar lebih baiknya dengan konvensional.

D. Pengajuan Hipotesis

Adapun hipotesis dalam penelitian ini adalah:

Ho: Tidak ada Perbedaan Kemampuan Pemecahan Masalah

Matematika Siswa Yang Diajar Dengan Model *Problem Based Learning* dan *Team Assisted Individualization* Kelas VII MTs

Ex Pga Univa Medan.

Ha: Ada Perbedaan Kemampuan Pemecahan Masalah Matematika
Siswa Yang Diajar Dengan Menggunakan Model *Problem*Based Learning dan Team Assisted Individualization Kelas VII

MTs Ex Pga Univa Medan.

BAB III METODE PENELITIAN

A. Jenis Penelitian

Penelitian ini merupakan penelitian eksperimen dengan jenis penelitiannya adalah eksperimen semu, yaitu menggunakan sampel penelitian dua kelas, dan kelas yang digunakan telah terbentuk sebelumnya dan telah ditentukan oleh pihak sekolah.Penelitian ini bertujuan untuk mengetahui Perbedaan Kemampuan Pemecahan Masalah Matematika Siswa Yang Diajar Menggunakan Model Problem Based Learning dan Model Pembelajaran Kooperatif Tipe Team Assisted Individualization (TAI) di Kelas VII MTs Ex Pga Univa Medan Pada Materi Segitiga.

Adapun yang menjadi variabel dalam penelitian ini adalah:

1. Variabel Bebas

Variabel bebas dalam penelitian ini adalah pembelajaran kooperatif tipe Problem Based Learning dan Tipe Team Assisted Individualization (TAI).

2. Variabel Terikat

Variabel terikat dalam penelitian ini adalah kemampuan pemecahan masalah matematika siswa.

B. Lokasi dan Waktu Penelitian

Penelitian ini dilaksanakan di MTs ExPGA Univa Medan di jl. Sisingamangaraja, Kel. Harjosari I, Kec. Medan Amplas, Kota Medan, Prov. Sumatera Utara, Kode Pos: 20147. Kegiatan penelitian dilakukan pada tanggal 20 Agustus 2108 semester I Tahun Ajaran 2018/2019. Adapun materi pokok pelajaran yang dipilih dalam penelitian ini adalah Keliling dan Luas Segitiga.

C. Populasi dan Sampel

Populasi adalah wilayah generalisasi yang terdiri atas objek/subjek yang memiliki kuantitas dan karakteristik tertentu yang ditetapkan oleh peneliti untuk dipelajari dan kemudian ditarik kesimpulannya. Setelah populasinya diidentifikasi, maka peneliti perlu memilih individu-individu dari populasi target untuk menjadi bagian dari sampel yang menjadi responden dalam penelitian. Populasi dari penelitian ini adalah seluruh siswa kelas VII MTs Ex Pga Univa Medan Kelas VII yang terdiri dari 4 kelas.

Sampel adalah sebahagian dari jumlah dan karakteristik yang dimiliki oleh populasi tersebut.⁵⁵ Teknik dalam pengambilan penelitian adalah *Cluster sampling*, dimana sampel terdiri dari sekelompok anggota yang terhimpun pada gagasan (*cluster*) bukan anggota populasi yang diambil secara individu. Teknik sampel ini menggunakan sampel yang sudah ada ataupun sudah disediakan, karena tidak dimungkinkan mengacak sampel yang akan menyebabkan terganggunya pembelajaran diluar penelitian. Sampel dari penelitian ini diambil pada 2 kelas yaitu kelas VII-A dan VII-B.

Kedua kelas sampel tersebut kemudian diberikan dua perlakuan yang berbeda. Kelas VII-A dijadikan sebagai kelas eksperimen 1 yaitu kelas yang diberikan perlakuan pembelajaran dengan menggunakan Model Pembelajaran *Problem Based Learning*, sedangkan kelas VII-B dijadikan sebagai kelas eksperimen 2 yang diberikan perlakuan pembelajaran dengan menggunakan Model Pembelajaran Kooperatif Tipe *Team Assisted Individualization (TAI)*

_

 $^{^{53}}$ Indra Jaya, 2010, $\it Statistik$ $\it Penelitian Untuk Pendidikan, Medan:$ CitaPustaka, hal. 20.

⁵⁴ Syaukani, 2015, *Metode Penelitian (pedoman praktis penelitian dalam bidang pendidikan)* Medan: Perdana Publishing, hal.25.

⁵⁵ Indra jaya, Opcit, hal. 32.

dengan masing-masing sampel yang diambil sebanyak 33 orang dari setiap kelasnya.

D. Definisi Operasional

Untuk menghindari terjadinya perbedaan penafsiran terhadap istilah-istilah yang *terdapat* pada rumusan masalah dalam penelitian ini, perlu dikemukakan definisi operasional sebagai berikut :

- Model pembelajaran problem based learning adalah suatu tipe model pembelajaran yang memilki langkah-langkah yaitu: (a) Orientasi siswa kepada masalah (b) Mengorganisasikan siswa untuk belajar (c) Mengembangkan dan menyajikan hasil karya (d) Menganalisis dan mengevaluasi proses pemecahan masalah.
- 2. Model pembelajaran *Team Assisted Individualization* adalah model pembelajaran yang pembeajarannya dengan langkah-langkah: (a) *Team,* yaitu pembentukan kelompok heterogen terdiri 4-5 orang. (b) *Placement test,* yaitu pemberian tes pada permulaan pelaksanaan program (c) *Student creative,* melaksanakan tugas dalam suatu kelompok dengan menciptakan situasi dimana keberhasilan individu ditentukan atau dipengaruhi oleh keberhasilan kelompoknya (d) *Team study,* yaitu guru mulai mengajar pelajaran pertama, selanjutnya para peserta didik diberikan tempat untuk memulai dalam mengerjakan dalam kelompok mereka kemudian guru memberikan bantuan secara individual kepada peserta didik yang membutuhkan (e) *Team scorers and team recognition,* yaitu pemberian skor terhadap hasil kerja tim. Skor ini didasarkan pada jumlah rata-rata

unit yang bisa dicakupi oleh tiap anggota tim dan memberikan kriteria penghargaan terhadap tim (f) *Teaching group* yaitu memberikan materi secara singkat dari guru menjelang pemberian tugas kelompok (g) *Fact test*, yaitu pelaksanaan tes berdasarkan fakta yang di peroleh peserta didik (h) *Whole-class unit*, yaitu pemberian rangkuman materi oleh guru serta serangkaian latihan di akhir waktu pembelajaran dengan strategi penyelesaian masalah.

3. Kemampuan pemecahan masalah matematika adalah proses mengorganisasikan konsep dan keterampilan ke dalam pola aplikasi baru untuk mencapai suatu tujuan. Dalam pemecahan masalah matematika langkah-langkah yang perlu diperhatikan oleh siswa yaitu : (a) Memahami masalah; (b) Merencanakan pemecahan masalah; (c) Melaksanakan rencana pemecahan masalah; (d) memeriksa kembali. Menelaah kembali berkaitan pemeriksaan solusi apakah sudah sesuai atau benar, apakah ada jawaban lain atau apakah ada cara lain.

E. Instrumen Pengumpulan Data

1. Bentuk instrument

Instrumen yang digunakan dalam penelitian ini adalah berbentuk tes. Tes adalah beberapa pertanyaan atau latihan serta alat lain yang digunakan untuk mengukur keterampilan, pengetahuan inteligensi, kemampuan atau bakat yang dimiliki oleh individu atau kelompok.⁵⁶ Tes yang digunakan dalam penelitian ini

 $^{^{56} \}mathrm{Suharsimi}$ Arikunto, 2013, Dasar-dasar Evaluasi Pendidikan , Jakarta: Bumi Aksara, hal. 46.

adalah tes untuk kemampuan Pemecahan Masalah Matematika uraian berjumlah 5 butir pertanyaan uraian.

Data hasil Kemampuan pemecahan masalah matematika diperoleh melalui pemberian tes tertulis yakni pretest dan postes. Tes diberikan kepada kelompok eksperimen 1 dan kelompok eksperimen 2, sebelum dan setelah perlakuan. Instrumen ini digunakan untuk mengukur Kemampuan pemecahan masalah matematika siswa dalam menguasai materi Segitiga di kelas VII MTs.

Adapun tes yang diberikan sebelum dan setelah perlakuan dilakukan, tujuannya untuk melihat kemampuan pemecahan masalah matematika siswa. Bentuk tes kemampuan pemecahan masalah matematika adalah uraian yang terdiri dari 5 soal yang digunakan dalam penelitian ini untuk mengetahui a) Kemampuan memahami masalah. b) Kemampuan merencanakan pemecahan masalah. c) Kemampuan menjalankan rencana pemecahan masalah. d) Kemampuan memeriksa kembali hasil perhitungan dan membuat kesimpulan.

2. Penskoran Instrument

Adapun soal-soal yang digunakan dalam tes kemampuan pemecahan masalah adalah soal yang dirancang oleh peneliti dengan berpatokan pada tujuan dan indikator pembelajaran yang akan dicapai. Teknik pemberian skor tiap langkah pemecahan masalah dipaparkan pada Tabel 3.1

Tabel 3.1 Pemberian skor kemampuan pemecahan masalah

Aspek yang dinilai	Skor	Keterangan				
Memahami	0	Salah menginterpretasikan soal atau tidak ada jawaban sama sekali.				
masalah	1	Salah menginterpretasikan sebagaian soal atau mengabaikan kondisi soal.				
	2	Memahami masalah atau soal secara lengkap.				
	0	Strategi yang digunakan tidak relevan atau tidak ada strategi sama sekali				
Menyusun	1	Strategi yang digunakan kurang dapat dilaksanakan dan tidak dapat dilanjutkan				
Rencana	2	Strategi yang digunakan benar tetapi mengarah pada jawaban yang salah atau tidak mencoba strategi lain				
	3	Menggunakan beberapa prosedur yang mengarah kepada jawaban yang benar.				
	0	Tidak ada jawaban sama sekali				
Menyelesaikan	1	Menggunakan beberapa prosedur yang mengarah kepada jawaban yang benar.				
masalah	2	Hasil salah atau sebagaian hasil salah, tetapi salah perhitungan saja				
	3	Hasil dan prosedur benar				
Memeriksa	0	Tidak ada pemeriksaaan atau tidak ada keterangan apapun.				
kembali hasil perhitungan	1	Ada pemeriksaan tetapi tidak tuntas atau tidak lengkap.				
permungan	2	Pemeriksaan dilaksanakan dengan lengkap untuk melihat kebenaran atau hasil proses.				

Setelah jawaban siswa dianalisis dan diberi skor, untuk keperluan penilaian total skor dikonversi ke nilai 1-100 dengan rumus:⁵⁷

Nilai akhir =
$$\frac{\text{jumlah skor yang diperoleh}}{\text{jumlah skor mak simal}} \times 100$$

_

⁵⁷ Suharsimi Arikunto, *Op.cit*, hal. 272.

3. Uji Instrument

Validitas tes a)

Untuk menentukan validitas suatu tes, digunakan rumus korelasi product momen sebagai berikut:⁵⁸

$$r_{xy} = \frac{N \sum xy - (\sum x)(\sum y)}{\sqrt{\{N \sum x^2 - (\sum x)^2\}\{N \sum y^2 - (\sum y)^2\}}}$$

Keterangan:

 r_{xy} = koefisien korelasi antar skor butir dan skor total

x = Skor butir

y = Skor total

N = Banyaknya sampel

 $\sum xy =$ Hasil kali x(skor butir) dengan y (skor total)

 $\sum x^2$ = jumlah kuadrat dari x (skor butir)

 $\sum y^2$ jumlah kuadrat dari y (skor total)

Kriteria pengujian validitas adalah setiap butir valid apabila $r_{xy} > r_{tabel}$.

Adapun uji validitas pada penelitian ini disajikan dalam tabel berikut:

Tabel 3.2 Uji validitas

Butir soal	r-hitung	r-tabel	Keterangan
1	0,639	0,344	Valid
2	0,638	0,344	Valid
3	0,56	0,344	Valid
4	0,752	0,344	Valid
5	0,657	0,344	Valid

Proses perhitungan validitas tersebut dapat dilihat pada lampiran 4

⁵⁸ Indra Jaya, *Op. Cit*, hal. 147.

b) Reliabilitas

Untuk mengetahui reliabilitas tes yang digunakan dalam penelitian dihitung dengan menggunakan rumus *Alpha Cronbach* yang dikemukakan oleh Arikunto dalam Jaya yaitu:⁵⁹

$$r_{11} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\sum \sigma_1^2}{\sigma_1^2}\right)$$

Keterangan:

 r_{11} = reliabilitas yang dicari

 $\sum \sigma_1^2$ = jumlah varians skor tiap-tiap butir

 σ_1^2 = varians total

n = banyaknya soal

yang masing-masing dihitung dengan rumus

$$\sigma_1^2 = \frac{\sum X_1^2 - \frac{(\sum X_i)^2}{N}}{N}$$

Keterangan:

 σ_1^2 = varians total

N = banyaknya sampel

 X_i = skor soal butir ke-i

Dengan kriteria reliabilitas tes:

 $r_{11} \le 0.20$ reliabilitas sangat rendah (SR)

 $0,20 < r_{11} \le 0,40$ reliabilitas rendah (RD)

 $0.40 < r_{11} \le 0.60$ reliabilitas sedang (SD)

 $0.60 < r_{11} \le 0.80$ reliabilitas tinggi (TG)

⁵⁹ Suharsimi Arikunto, *Op.cit*, hal. 122.

 $0.80 < r_{11} \le 1.00$ reliabilitas sangat tinggi (ST)

Adapun uji reliabilitas pada penelitian ini dapat disajikan dalam tabel berikut:

Tabel 3.3 Uji Reliabilitas Instrumen soal

Reliabilitas soal	Kategori	
0,72748	Tinggi	

Proses perhitungan reliabilitas tersebut dapat dilihat pada lampiran.6

c) Tingkat kesukaran

Untuk menentukan tingkat kesukaran tes atau indeks kesukaran tes digunakan rumus:⁶⁰

$$TK = \frac{S_A + S_B}{n \ maks}$$

Keterangan:

 S_A = Jumlah skor individu kelompok atas

 S_B = Jumlah skor individu kelompok bawah

n = Jumlah siswa kelompok atas dan kelompok bawah

maks = skor maksimal soal yang bersangkutan

Kriteria tingkat kesukaran soal adalah:

Soal dikatakan sukar, jika TK 0.0 - 0.30

Soal dikatakan sedang, jika TK 0,31 – 0,70

Soal dikatakan mudah, jika TK 0.71 - 1.00

⁶⁰ Asep Jihad dan Abdul Haris, 2013, *Evaluasi Pembelajaran*, Yogyakarta: Multi Pressindo, hal. 182

Adapun tingkat kesukaran soal pada penelitian ini dapat disajikan dalam tabel berikut:

Tabel 3.4 Tingkat Kesukaran Soal

Butir Soal	Taraf Kesukaran	Kriteria
1	0,75	Mudah
2	0,75	Mudah
3	0,75	Mudah
4	0,7	Mudah
5	0,67	Cukup

Proses Perhitungan tingkat kesukaran soal dapat dilihat pada lampiran 7

d) Daya beda tes

Untuk menghitung daya pembeda tes atau indeks diskriminasi tes yang diungkapkan oleh suherman dalam dicari dengan rumus:⁶¹

$$DB = \frac{S_A - S_B}{I_A}$$

Keterangan:

DP = Daya pembeda

 S_A = jumlah skor kelompok atas

 S_B = jumlah skor kelompok bawah

 I_A = jumlah skor ideal salah satu kelompom pada butir soal yang diolah

Klasifikasi daya pembeda sebagai berikut:⁶²

 $^{^{61}}$ Asep Jihad dan Abdul Haris, 2013, *Evaluasi Pembelajaran*, Yogyakarta: Multi Pressindo, hal. 181

⁶² Loc.cit, hal.181.

0.3 - 0.39 cukup baik

0,20 - 0,29 minimum

0,19 sampai kebawah jelek

Setelah indeks daya pembeda diperoleh, maka harga indeks daya pembeda tersebut sesuai pada tabel berikut

Tabel 3.5 Kriteria Daya Pembeda

Butir Soal	Daya Beda Soal	Klasifikasi
1	2,4	Sangat baik
2	2,8	Sangat baik
3	2,1	Sangat Baik
4	2,8	Sangat baik
5	2,5	Sangat baik

Perhitungan daya beda soal bisa dilihat di lampiran 8

F. Teknik Pengumpulan Data

Teknik pengumpulan data dalam penelitian ini adalah menggunakan pre-test (T_1) dan post-test (T_2) untuk kemampuan pemecahan masalah matematika. Kedua tes tersebut diberikan kepada semua siswa pada kelompok eksperimen 1 yang diberikan perlakuan (X_1) dan eksperimen 2 yang diberikan perlakuan (X_2) Semua siswa mengisi atau menjawab sesuai dengan pedoman yang telah ditetapkan peneliti pada awal atau lembar pertama dari tes itu untuk pengambilan data. Teknik pengambilan data berupa pertanyaan-pertanyaan dalam bentuk uraian pada materi Segitigasebanyak 5 butir soal. Adapun teknik pengambilan data adalah sebagai berikut:

- 1. Memberikan pretest dan postes untuk memperoleh data kemampuan pemecahan masalah pada kelas eksperimen 1dan kelas eksperimen 2.
- 2. Melakukan analisis data pretest dan postes yaitu uji normalitas, uji homogenitas pada kelas kelas eksperimen 1dan kelas eksperimen 2.
- 3. Melakukan analisis data pretest dan postes yaitu uji hipotesis denganmenggunakan uji-t. Teknik pengumpulan data dapat digambarkan seperti pada Tabel 3.3

Tabel 3.6 Teknik Pengumpulan Data

Kelas	Pengukuran Pre-Test	Perlakuan	Pengukuran Post-Test
Eksperimen 1	T_1	X_1	T_2
Eksperimen 2	T_1	X_2	T_2

Keterangan:

 T_1 : Hasil tes awal (pre-test) pada kelas eksperimen I dan kelas eksperimen II

 T_2 : Hasil tes awal(post-test) pada kelas eksperimen I dan kelas eksperimen II

 X_1 : Perlakuan model probelem based learning pada kelas eksperimen I

X₂: Perlakuan model *Team Asissted Individualized* pada kelas eksperimen II

G. Teknik Analisis Data

Dalam penelitian ini data yang diolah adalah kemampuan pemecahan masalah siswa pada kelas eksperimen 1 (pembelajaran dengan model *Problem Based Learning*) dan kelas eksperimen 2 (pembelajaran dengan model pembelajaran kooperatif tipe *Team Assisted Individualization (TAI)*). Teknik analisis data yang digunakan adalah analisis perbedaan dengan menggunakan rumus uji-t. Sebelum melakukan Uji-t tersebut terlebih dahulu dilakukan langkah-langkah sebagai berikut:

1. Menghitung Rata-Rata Skor

Menghitung rata-rata skor dengan rumus: 63

$$\overline{X} = \frac{\sum Xi}{N}$$

Keterangan : $X_i = Skor yang diperoleh siswa$

N = Jumlah siswa

2. Menghitung Standar Deviasi

Standar deviasi dapat dicari dengan rumus:⁶⁴

$$SD = \sqrt{\frac{\sum X^2}{N} - \left(\frac{\sum X}{N-1}\right)^2}$$

Keterangan:

SD = Standar deviasi

 $\frac{\sum X^2}{N}$ = Tiap skor dikuadratkan lalu dijumlahkan kemudian dibagi N.

 $\left(\frac{\sum X}{N-1}\right)^2$ = Semua skor dijumlahkan, dibagi N-1 kemudian dikuadratkan.

3. Uji Normalitas

Untuk menguji apakah sampel berdistribusi normal atau tidak digunakan uji normalitas *Liliefors*. Langkah-langkahnya sebagai berikut:

a. Mencari simpangan baku

Untuk mencari bilangan baku, digunakan rumus: 65

$$Z = \frac{X_1 - \bar{X}}{S}$$

Dimana:

63 Sudjana, 2005, Sudjana, Metoda Statistik, Bandung: Tarsito, hal.67

⁶⁴ Yusuf, 2015, Asesmen Dan Evaluasi Pendidikan, Jakarta: Kencana, hal. 240

⁶⁵Sudjana, 2005, *Metoda Statistik*, Bandung: Tarsito, hal. 99.

 \overline{X} = Rata-rata sampel

S = Simpangan baku (standar deviasi)

b. Menghitung Peluang $S_{(Z_i)}$ dengan rumus :

$$S_{(Zi)} = \frac{banyaknyaZ^1, Z^2, \dots, Znyang \leq Zi}{n}$$

- c. Menghitung Selisih $F_{(Zi)}-S_{(Zi)}$, kemudian menentukan harga mutlaknya
- d. Mengambil harga L hitung yang paling besar diantara harga mutlak (L_0) . Untuk menerima atau menolak hipotesis kita bandingkan L_0 dengan nilai kritis L yang diambil dari daftar, untuk tarif nyata $\alpha=0.05$.

Dengan kriteria pengujian:

Jika L₀< L_{tabel} maka populasi berdistribusi normal

Jika L₀> L_{tabel} maka populasi tidak berdistribusi normal

4. Uji Homogenitas

Uji homogenitas yang dilakukan untuk melihat apakah kedua kelompok sampel mempunyai varians yang homogen atau tidak. Uji homogenitas dalam penelitian ini adalah dengan menggunakan rumus *bartlet* dapat dilakukan langkah langkah sebagai berikut : ⁶⁶

- a. Menghitung varians setiap sampel
- b. Masukkan varian setiap sampel kedalam table bartlet
- c. Menghitung varians gabungan dengan rumus:

$$S^{2} = \left(\frac{\sum (n_{i} - 1)S_{i}^{2}}{\sum (n_{1} - 1)}\right)$$

-

⁶⁶Indra Jaya dan Ardat, (2013), Penerapan Statistik untuk Pendidikan, hal. 263

- d. Menghitung $\log S^2$
- e. Menghitung nilai B dengan rumus

$$B = (\log S^2) \times \sum (n_i - 1)$$

f. Menghitung X^2 dengan rumus

$$X_{hitung}^2 = (ln10) \left\{ B - \sum (n_i - 1) \log S_i^2 \right\}$$

- g. Mencari nilai X_{tabel}^2 dengan dk = k 1 dimana k adalah jumlah kelompok Aturan pengambilan keputusan adalah membandingkan X_{hitung} dengan nilai X_{tabel} . Kriterianya adalah jika $X_{hitung} < X_{tabel}$ maka Ho diterima dan Ha ditolak berarti varians homogen. Jika $X_{hitung} > X_{tabel}$ maka Ho ditolak dan Ha diterima atau varians tidak homogen.
- 5. Uji Hipotesis

Hipotesis yang akan diuji adalah:

 $H_0: \mu_1=\mu_2$: Tidak terdapat Perbedaan Kemampuan Pemecahan Masalah Matematika Siswa Yang Diajar Dengan Menggunakan Model *Problem Based Learning* dan *Team Assisted Individualization* Kelas VII MTs Ex PGA UNIVA Medan.

 $H_a: \mu_1 \neq \mu_2$: Terdapat Perbedaan Kemampuan Pemecahan Masalah Matematika Siswa Yang Diajar Dengan Model *Problem Based Learning* dan *Team Assisted Individualization* Kelas VII MTs Ex PGA UNIVA Medan.

Keterangan:

 $\mu_1={
m Rata}$ -rata skor kemampuan pemecahan masalah matematika siswa yang diajar menggunakan model ${\it Problem Based}$ ${\it Learning}.$

 μ_2 = Rata-rata skor kemampuan pemecahan masalah matematika siswa yang diajar menggunakan model pembelajaraan kooperatif tipe *Team Assisted Individualization (TAI)*

Uji Hipotesis bertujuan untuk mengetahui apakah kedua kelas memiliki rata-rata yang sama atau tidak. Ketentuan pengujiannya adalah sebagai berikut:

Data kedua kelas berdistribusi normal dan memiliki varians yang homogen, maka pengujian dilakukan menggunakan uji t yaitu : 67

$$t = \frac{\overline{X_1} - \overline{X_2}}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Dengan

$$S^{2} = \frac{\sqrt{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}}{n_{1} + n_{2} - 2}$$

Kriteria pengujian adalah H_0 diterima jika $t_{hitung} < t_{tabel}$ dengan $dk=(n_1+n_2-2)$. Dengan peluang $(1-\alpha)$ dan taraf signifikan $\alpha=0.05$. Untuk harga-harga t lainnya H_0 ditolak atau diterima Ha.

Keterangan:

t = Luas daerah yang dicapai

⁶⁷ Sudjana, 2005, *Metoda Statistik*, Bandung: Tarsito, hal. 239.

 n_1 = Jumlah siswa pada kelas eksperimen 1 (sampel)

 n_2 = Jumlah siswa pada kelas eksperimen 2 (sampel)

 S_1 = simpangan baku pada kelas eksperimen 1

 S_2 = simpangan baku pada kelas eksperimen 2

 S^2 = varians gabungan

 $\overline{X_1}$ = rata-rata selisih skor postes dan pretes kemampuan pemecahan masalah matematika siswa pada kelas eksperimen 1

 $\overline{X_2}$ = rata-rata selisih skor postes dan pretes kemampuan pemecahan masalah matematika siswa pada kelas eksperimen 2.

BAB IV

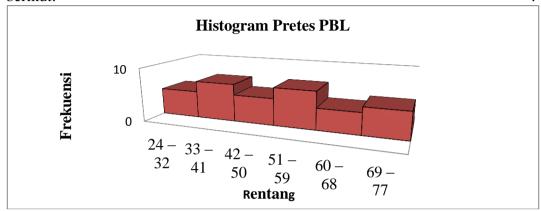
HASIL PENELITIAN DAN PEMBAHASAN

A. Hasil Penelitian

1. Deskripsi Hasil Penelitian

a. Data Hasil *Pretest* Kemampuan Pemecahan Masalah Matematika Siswa Yang Diajar Dengan Menggunakan Model Pembelajaran *Problem Based Learning* (PBL)

Dari data *pretest* di kelas VII A yang dijadikan kelas eksperimen 1 terdapat sebanyak 33 siswa. Untuk mengetahui rata-rata *pretest*, jumlah seluruh nilai siswa, di bagi dengan jumlah seluruh siswa pada kelas eksperimen 1 sehingga diperoleh rata-rata sebesar 47,93939. Hal ini mengindikasikan bahwa skor rata-rata kemampuan pemecahan masalah matematika pada kelas ini berada dalam kategori yang sangat rendah dengan kriteria ketuntasan minimal (KKM) mata pelajaran matematika adalah 70.


Variansi dari kelas eksperimen 1 sebelum diberi perlakuan diperoleh 191,6212. Dengan standar deviasi dari kelas eksperimen 1 sebelum diberi perlakuan adalah 13,84273, nilai maksimum 70, nilai minimum 24 dengan modus 54,5 dan median 41,2. Proses perhitungan dapat dilihat pada lampiran 11 hal 106. Secara kuantitatif deskripsi hasil pretest dapat dilihat pada tabel berikut ini:

Tabel 4.1 Deskripsi Hasil *Pretest* Kemampuan pemecahan masalah matematika siswa dikelas eksperimen 1

Kelas	Rentang	Frekuensi (f)	Frekuensi Komulatif (F)
1	24 - 32	5	5
2	33 – 41	7	12
3	42 - 50	5	17
4	51 – 59	7	24
5	60 - 68	4	28

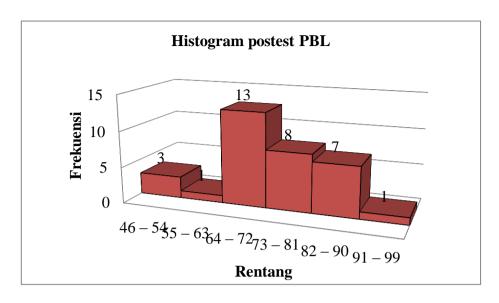
6	69 – 77	5	33
	Jumlah	33	33

Berdasarkan data tersebut, dapat dibentuk histogram data kelompok sebagai berikut:

Gambar 4.1 Histogram hasil *pretest* kemampuan pemecahan masalah matematika siswa di kelas Eksperimen 1

b. Data Hasil *Posttest* Kemampuan Pemecahan Masalah Matematika siswa yang Diajar dengan Menggunakan Model Pembelajaran Kooperatif Tipe *Problem Based Learning* (PBL)

Berdasarkan data yang diperoleh dari hasil *Post-test* kemampuan pemecahan masalah matematika siswa di kelas eksperimen 1 diperoleh rata-rata sebesar 73,69697. Hal ini mengindikasikan bahwa skor rata-rata kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan model pembelajaran PBL pada kelas ini berada dalam kategori sedang karena banyak siswa yang telah mampu mencapai indikator yang di harapkan melalui aspekaspek kemampuan pemecahan masalah matematika.


Dari tes kemampuan pemecahan masalah matematika yang diberikan di kelas eksperimen 1 setelah diberi perlakuan diperoleh sebanyak 24 siswa mencapai nilai ketuntasan minimal berarti siswa memperoleh nilai tes kemampuan pemecahan masalah matematika sama dengan atau lebih dari 70. Dan terdapat 9 siswa yang tidak mencapai nilai ketuntasan minimal dalam tes kemampuan pemecahan masalah matematika yang bearti siswa memperoleh nilai dibawah 70.

Variansi dari kelas eksperimen 1 setelah diberi perlakuan diperoleh 131,2803. Standar deviasi dari kelas eksperimen 1 setelah diberi perlakuan adalah 11,45776, nilai maksimum 92, nilai minimum 46 dengan rentangan nilai (range) 46, modus 68,8 dan median 63,7. Proses perhitungan dapat dilihat pada lampiran 11 hal 107. Secara kuantitatif dapat dilihat pada tabel berikut ini:

Tabel 4.2 Deskripsi Hasil *Posttest* Kemampuan pemecahan masalah matematika siswa dikelas Eksperimen 1

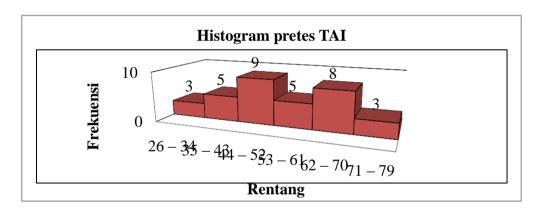
Kelas	Rentang	Frekuensi (f)	Frekuensi Komulatif (F)
1	46 – 54	3	3
2	55 – 63	1	4
3	64 – 72	13	17
4	73 – 81	8	25
5	82 – 90	7	32
6	91 – 99	1	33
	Jumlah	33	33

Berdasarkan data tersebut, dapat dibentuk histogram data kelompok sebagai berikut :

Gambar 4.2 Histogram hasil *posttest* kemampuan pemecahan masalah matematika siswa di kelas Eksperimen 1

c. Data Hasil *Pretest* Kemampuan Pemecahan Masalah Matematika siswa yang Diajar dengan Menggunakan Model Pembelajaran Kooperatif Tipe *Team Assited Individualization* (TAI)

Berdasarkan data yang diperoleh dari hasil *Pre-test* dan *Post-test* kemampuan pemecahan masalah matematika siswa dikelas VII B mengalami peningkatan. Dari data *pretest* di kelas VII B yang dijadikan kelas eksperimen 2 terdapat sebanyak 33 siswa. Untuk mengetahui rata-rata *pretest*, jumlah seluruh nilai siswa 1753, di bagi dengan jumlah seluruh siswa pada kelas eksperimen 2 sehingga diperoleh rata-rata sebesar 53,12121. Hal ini mengindikasikan bahwa skor rata-rata kemampuan pemecahan masalah matematika pada kelas ini berada dalam kategori yang sangat rendah dengan kriteria ketuntasan minimal (KKM) mata pelajaran matematika adalah 70.


Variansi dari kelas eksperimen 2 sebelum diberi perlakuan diperoleh 190,4848. Standar deviasi dari kelas eksperimen 2 sebelum diberi perlakuan adalah 13,80162, nilai maksimum 76, nilai minimum 26 dengan rentangan nilai

(range) 50, modus 48 dan median 43,5. Proses perhitungan dapat dilihat pada lampiran 12 hal 108. Secara kuantitatif dapat dilihat pada tabel berikut ini :

Tabel 4.3 Deskripsi *Pretest* Kemampuan pemecahan masalah matematika siswa kelas Eksperimen 2

Kelas	Rentang	Frekuensi (f)	Frekuensi Komulatif (F)
1	26 – 34	3	3
2	35 - 43	5	8
3	44 - 52	9	17
4	53 – 61	5	22
5	62 - 70	8	30
6	71 – 79	3	33
	Jumlah	33	33

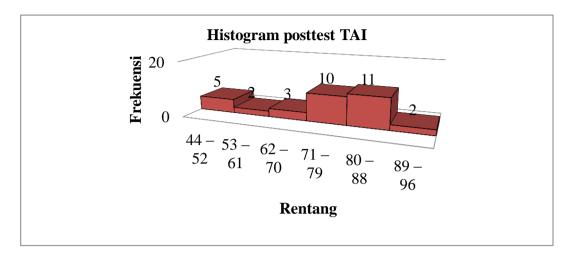
Berdasarkan data tersebut, dapat dibentuk histogram data kelompok sebagai berikut :

Gambar 4.3 Histogram hasil *pretest* kemampuan pemecahan masalah matematika siswa di kelas Eksperimen 2

d. Data Hasil *Posttest* Kemampuan Pemecahan Masalah Matematika siswa yang Diajar dengan Model Pembelajaran Kooperatif Tipe *Team Assited Individualization* (TAI)

Berdasarkan data yang diperoleh dari hasil *Posttest* kemampuan pemecahan masalah matematika siswa setelah diberi perlakuan yaitu siswa yang diajar dengan menggunakan Pembelajaran Kooperatif Tipe *Team Assited Individualization* (TAI) diperoleh rata-rata sebesar 73,515. Hal ini

mengindikasikan bahwa skor rata-rata kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan pembelajaran kooperatif tipe *Snowball Throwing* berada dalam kategori sedang karena banyak siswa yang telah mampu mencapai indikator yang diharapkan melalui aspek-aspek kemampuan pemecahan masalah matematika.


Dari tes kemampuan pemecahan masalah matematika yang diberikan di kelas eksperimen 2 setelah diberi perlakuan diperoleh sebanyak 24 siswa mencapai nilai ketuntasan minimal berarti siswa memperoleh nilai tes kemampuan pemecahan masalah matematika sama dengan atau lebih dari 70. Terdapat 9 siswa yang tidak mencapai nilai ketuntasan minimal dalam tes kemampuan pemecahan masalah matematika yang bearti siswa memperoleh nilai di bawah 70.

Variansi dari kelas eksperimen 2 diperoleh 198,0076. Standar deviasi dari kelas eksperimen 2 adalah 14,07152, nilai maksimum 90, nilai minimum 44 dengan rentangan nilai (range) 46, modus 80,8 dan median 68,2. Proses perhitungan dapat dilihat pada lampiran 12 hal 109. Secara kuantitatif dapat dilihat pada tabel berikut ini :

Tabel 4.4 Deskripsi hasil *posttest* kemampuan pemecahan masalah matematika siswa kelas eksperimen 2

Kelas	Rentang	Frekuensi (f)	Frekuensi Komulatif (F)
1	44 - 52	5	5
2	53 – 61	2	7
3	62 - 70	3	10
4	71 – 79	10	20
5	80 - 88	11	31
6	89 – 96	2	33
	Jumlah	33	33

Berdasarkan data tersebut, dapat dibentuk histogram data kelompok sebagai berikut :

Gambar 4.4 Histogram hasil *posttest* kemampuan pemecahan masalah matematika siswa di kelas Eksperimen 2

Secara singkat hasil penelitian ini di deskripsikan seperti terlihat pada tabel berikut :

Tabel 4.5 Kemampuan Pemecahan Masalah Matematika Siswa Kelas Eksperimen 1 dan Kelas Eksperimen 2

	Jenis	Rata – rata		enis Rata – rata Varian		Simpangan Baku	
No	Perlakuan	Pretes	Postes	Pretes	Postes	Pretes	Postes
	Eksperimen	47,93939	73,697	191,6212	131,2803	13,8427	11,457762
1	1						
	Eksperimen	53,12121	73,515	190,4848	198,0075	13,8016	14,071516
2	2				8		

Tabel tersebut menunjukkan bahwa kemampuan pemecahan masalah matematika siswa yang diajar dengan model pembelajaran *Problem Based Learning* (PBL) dan *Team Assited Individualization* (TAI) sama-sama berada dalam kategori sedang dilihat dari rata-rata *Posttest* dari kedua kelas tersebut.

2. Pengujian Persyaratan Analisis

Dalam proses analisis tingkat lanjut untuk menguji hipotesis, perlu dilakukan uji persyaratan data meliputi : Pertama, bahwa data bersumber dari sampel yang dipilih secara acak. Kedua, sampel berasal dari populasi yang berdistribusi normal. Ketiga, kelompok data mempunyai data yang homogen. Data berasal dari pengambilan secara acak telah diketahui berdasarkan teknik sampling pada pemaparan metodologi pada bab sebelumnya. Sedangkan pada bab ini dilakukan persyaratan analisis normalitas dan homogenitas dari distribusi data yang diperoleh.

a) Uji Normalitas

Salah satu teknik analisis dalam uji normalitas adalah teknik analisis Lilliefors, yaitu suatu teknik analisis uji persyaratan sebelum dilakukannya uji hipotesis. Berdasarkan sampel acak maka diuji hipotesis nol bahwa sampel berasal dari populasi berdistribusi normal dan hipotesis tandingan bahwa populasi berdistribusi tidak normal. Dengan ketentuan Jika L-hitung < L-tabel maka sebaran data memiliki distribusi normal. Tetapi jika L-hitung > L-tabel maka sebaran data tidak berdistribusi normal. Hasil analisis normalitas untuk masing-masing sub kelompok dapat dijelaskan sebagai berikut:

 Kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan model pembelajaran *Problem Based Learning* (PBL)

Berdasarkan hasil perhitungan uji normalitas untuk sampel pada Kemampuan Pemecahan Masalah Matematika siswa sebelum diberi perlakuan pada kelas eksperimen 1 diperoleh nilai L-hitung = 0,073 dengan nilai L-tabel = 0,154 Karena L-hitung < L-tabel yakni 0,073 < 0,154 maka dapat disimpulkan bahwa H₀ diterima dan Ha ditolak. Kemudian untuk sampel pada kemampuan pemecahan masalah matematika siswa setelah diberi perlakuan pada kelas eksperimen 1 atau yang diajar dengan menggunakan model pembelajaran *Problem Based Learning* (PBL) diperoleh nilai L-hitung = 0,128 dengan nilai L-tabel = 0,154 Karena L-hitung < L-tabel yakni 0,128 < 0,154 maka dapat disimpulkan H₀ diterima. Sehingga dapat dikatakan bahwa sampel kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan pembelajaran *Problem Based Learning* (PBL) berasal dari populasi yang berdistribusi **Normal**.

 Kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan model pembelajaran kooperatif Tipe Team Assisted Individualization (TAI)

Berdasarkan hasil perhitungan uji normalitas untuk sampel pada kemampuan pemecahan masalah matematika siswa sebelum diberi perlakuan pada kelas eksperimen 2 diperoleh nilai $L_{\text{hitung}} = 0,083$ dengan nilai $L_{\text{tabel}} = 0,154$ Karena $L_{\text{hitung}} < L_{\text{tabel}}$ yakni 0,083 < 0,154 maka dapat disimpulkan hipotesis nol diterima. Kemudian untuk sampel pada kemampuan pemecahan masalah matematika siswa sebelum diberi perlakuan pada kelas eksperimen 2 atau yang diajar dengan menggunakan pembelajaran kooperatif tipe *Team Assisted Individualization (TAI)* diperoleh nilai $L_{\text{hitung}} = 0,120$ dengan nilai $L_{\text{tabel}} = 0,154$ Karena $L_{\text{hitung}} < L_{\text{tabel}}$ yakni 0,120 < 0,154 maka dapat disimpulkan bahwa H_0 diterima

dan Ha ditolak. Sehingga dapat dikatakan bahwa sampel Kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan model pembelajaran kooperatif Tipe *Team Assisted Individualization* (TAI) berasal dari populasi yang berdistribusi **Normal.**

Dari seluruh data hasil uji normalitas kelompok-kelompok data di atas dapat disimpulan bahwa semua sampel berasal dari populasi yang berdistribusi normal yang dibuktikan dengan hasil perhitungan menunjukkan $L_{\text{-hitung}} < L_{\text{-tabel}}$. Kesimpulan hasil uji normalitas dari masing-masing kelompok dapat dilihat pada tabel berikut.

Tabel 4.6 Rangkuman Hasil Uji Normalitas dengan Teknik Analisis Lilliefors

			J				
Kelas		Pretest			Posttest		
Keias	L_0	L_{t}	Kesimpulan	L_0	L_{t}	Kesimpulan	
Eksperimen 1	0,073	0,154	Normal	0,128	0,154	Normal	
Eksperimen 2	0,083	0,154	Normal	0,120	0,154	Normal	

b) Uji Homogenitas

Pengujian homogenitas varians populasi yang berdistribusi normal dilakukan dengan uji *Bartlett*. Dari hasil perhitungan χ^2_{hitung} (chi-Kuadrat) diperoleh nilai lebih kecil dibandingkan harga pada χ^2_{tabel} . Hipotesis statistik yang diuji dinyatakan sebagai berikut:

H₀: Tidak ada perbedaan dari masing-masing sub kelompok

H₁: Paling sedikit satu tanda sama dengan tidak berlaku

Uji homogenitas dilakukan pada masing-masing sub-kelompok sampel yakni: sampel pretest dan posttest pada masing-masing kelas eksperimen. Rangkuman hasil analisis homogenitas dapat dilihat pada tabel berikut.

Tabel 4.7 Rangkuman hasil analisis homogenitas data *pretest* dan *posttest* kelas eksperimen 1 dan eksperimen 2

Data	Sampel	Varians	F _{hitung}	F _{tabel}	Kesimpulan
	Kelas Eksperimen 1	1328,19			
Pretest	Kelas Eksperimen 2	1431,22	0,045	3,841	Homogen
	Kelas Eksperimen 1	1632,42			
Posttest	Kelas Eksperimen 2	1910,39	0,198	3,841	Homogen

Dari tabel sebelumnya dapat dilihat bahwa pada interval kepercayaan 95% atau 0,95 (1- α = 1- 0,05 = 0,95) dan dk = k-1 = 2-1 = 1, maka diperoleh X^2_{tabel} = 3,841. Dapat dilihat bahwa data pretest pada kelas eksperimen 1 dan eksperimen 2 $X^2_{hitung} < X^2_{tabel}$ yaitu 0,045 < 3,841 dan data posttest pada kelas eksperimen 1 dan eksperimen 2 $X^2_{hitung} < X^2_{hitung} < X^2_{tabel}$ yaitu 0,198 < 3,841 yang berarti data kedua kelompok sampel berasal dari populasi yang mempunyai varian homogen.

c) Uji Hipotesis

Setelah dilakukan uji normalitas diketahui bahwa sampel kedua Kelas adalah sampel yang berdistribusi normal dan memiliki Varians yang homogen, maka dilakukan uji hipotesis. Dalam penelitian ini menggunakan uji t. Uji hipotesis dilakukan degan uji t dua pihak yaitu membedakan rata rata kemampuan pemecahan masalah matematika siswa kelas eksperimen 1 dan kelas eksperimen 2 untuk mengetahui ada tidaknya perbedaan kemampuan pemecahan masalah

matematika siswa dengan menggunakan strategi pembelajaran Team Asissted

Individualized dan Problem Based Learning pada materi Segitiga di kelas VII

MTs. Ex Pga UNIVA TP 2018/2019.

Peningkatan yang terjadi sebelum dan sesudah pembelajaran ini

diperhitungkan dengan rumus N-gain (Normalized-gain). Gain adalah selisih

antara nilai pretest dan postest. Gain menunjukkan peningkatan pemahaman atau

penguasaan konsep siswa setelah pembelajaran dilakukan guru. Adapun rumus

N-gain adalah sebagai berikut:

$$N-gain = \frac{Spost-Spre}{Smaks-Spre}$$

Keterangan:

 S_{post}

: skor tes akhir

S_{maks} : skor maksimum

 S_{pre}

: skor tes awal

Hasil uji hipotesis taraf signifikan 0.05 dan $dk = n_1 + n_2 - 2 = 33 + 10$

33 - 2 = 64 diperoleh $t_{hitung} = 0.5$ dan $t_{tabel} = 1.997$ sehingga didapat 0.5 < 1.5

1,997 atau $t_{\rm hitung} < t_{\rm tabel}$ maka $H_{\rm o}$ diterima dan $H_{\rm a}$ ditolak. Kemudian dilihat

dari hasil rata rata nilai postest kelas eksperimen 1 lebih tinggi dibandingkan kelas

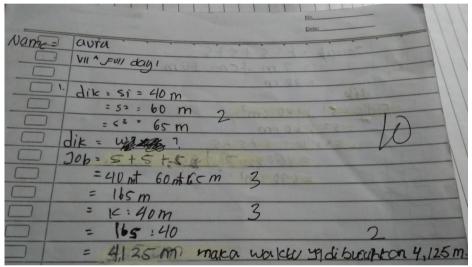
eksperimen 2. Secara ringkas hasil perhitungan uji hipotesis dinyatakan dalam

table berikut:

Tabel 4.8 Ringkasan Hasil Perhitungan Uji t

Data	Rata – rata	t – hitung	t – tabel	Kesimpulan
Eksperimen 1	73,697	0,5	1,997	Tidak terdapat perbedaan
Eksperimen 2	73,515	• • • • • • • • • • • • • • • • • • • •	1,557	Berarti tidak terdapat pengaruh

Proses perhitungan dapat dilihat pada lampiran hal. 129


Berdasarkan tabel diatas, hasil perhitungan uji hipotesis nilai rata –rata postes kelas eksperimen 1 dan kelas eksperimen 2 diperoleh t – hitung = 0,5 >t – tabel = 1,997 dengan rata rata nilai postes yaitu kelas eksperimen 1 sebesar 73,697 dikategorikan **cukup dalam memenuhi nilai KKM** dan rata rata kelas Eksperimen 2 sebesar 73,515 dikategorikan **cukup dalam memenuhi nilai KKM** maka H_o diterima dan H_a ditolak sehingga diperoleh kesimpulan bahwa Tidak ada perbedaan kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan model pembelajaran *Problem Based Learning* dan Model Pembelajaran *Team Assisted Individualization*.

B. Pembahasan Hasil Penelitian

Penelitian ini dilaksanakan di MTs. Ex PGA UNIVA Medan menggunakan sampel dua kelas yaitu kelas VII-A diajarkan dengan menggunakan model pembelajaran *Problem Based Learning* (Kelas Eksperimen 1) dan kelas VII-B menggunakan model pembelajaran *Team Asissted Individualized* (Kelas Eksperimen2).

1. Kemampuan Pemecahan Masalah Matematika Siswa yang Diajar dengan *Problem Based Learning* (PBL)

Hasil penelitian menunjukkan rata-rata nilai *post test* siswa yang diajarkan dengan model pembelajaran *Problem Based Learning* adalah 73,7 dikategorikan **sedang dalam memenuhi nilai KKM.** Adapun gambaran nilai *post test* siswa yang diajarkan dengan menggunakan model *Problem Based Learning* diantaranya:

Gambar 4. 5 Hasil *post test* siswa Kemampuan Tinggi Kelas Eksperimen 1

Pada gambar tersebut, menunjukkan bahwa siswa telah mampu mengerjakan soal yang diberikan, dan kemampuan pemecahan masalah siswa tersebut termasuk kedalam kategori baik. Siswa sudah mampu menentukan apa yang diketahui dan ditanyakan, menunjukkan perencanaan pengerjaan, mengerjakan sesuai rencana yang diberikan, dan memeriksa kembali hasil pengerjaannya. Hal ini sesuai dengan indikator dari kemampuan pemecahan masalah itu sendiri.

- 1	Noma: Vebrianein Kis: Full day A.
1.	Sisitsisi : Sa: 40m.
	5 6 6 m.
	3c: 65m.
	V.
	dit: tentukan waktu minimal Sang dibutuhkan
	Yusur untuk mengelilingi toman.
	= keiving = S+ S+ S = 40+60+65 = 165
	= 165 : 10m Jom
	165 = 40 menit.
	= 4, 125 km

Gambar 4.6 Hasil *Pos test* siswa Kemampuan Sedang Kelas Eksperimen 1

Pada gambar tersebut, menunjukkan bahwa siswa telah mampu mengerjakan soal yang diberikan, dan kemampuan pemecahan masalah siswa tersebut termasuk kedalam kategori baik. Siswa sudah mampu menentukan apa yang diketahui dan ditanyakan, menunjukkan perencanaan pengerjaan, mengerjakan sesuai rencana yang diberikan, namun siswa tidak memeriksa kembali jawabannya.

	Vīt A
Dik	: Taman dideket rumah yusuf berbentuk segitiga yang
	ukuran sia-sisi-sisinya berturut -turut adalah yomi
	60 m dan 65 m. Setiap Minggu yusuf berlari
	mengelilingi taman tersebut untuk berolahraga.
	Jika satu menit berlari yusur dapat menempuh
	Sarak yom, tentukan waktu minimal yo di butuhkan
Die	Sarak 40 m, tentukan waktu minimal yg dibutuhkan
Die k	Sarak 40 m , tentukan waktu minimal yg di butuhkan yusef untuk mengelilingi taman.
	Sarak yom, tentukan waktu minimal yg dibutuhkan yusuf untuk mengelilingi taman.

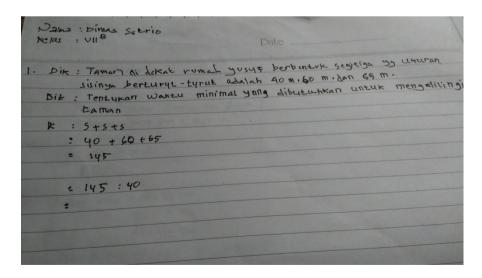
Gambar 4.7 Hasil *Pos test* siswa Kemampuan Rendah Kelas Eksperimen 1

Pada gambar tersebut, menunjukkan bahwa siswa kurang mampu mengerjakan soal yang diberikan, dan kemampuan pemecahan masalah siswa tersebut termasuk kedalam kategori kurang baik. Siswa sudah menunjukkan perencanaan pengerjaan, namun rencana pengerjaan yang ia lakukan beum tuntas ia juga melaksanakan rencana pengerjaan, namun siswa tidak mampu menentukan apa yang diketahui dan ditanyakan, serta siswa tidak memeriksa kembali hasil pengerjaannya.

Dari hasil *post test* siswa pada kelas eksperimen 1 yang diajarkan dengan model Pembelajaran *Problem Based Learning* sebagian besar siswa sudah termasuk kedalam kategori baik, hanya ada beberapa siswa yang masih dalam kategori kurang baik. Pada indikator pertama sebanyak 65% (21 siswa) dapat memahami masalah dengan menuliskan yang diketahui dan ditanya pada soal dengan benar, pada indikator kedua 51% (17 siswa) dapat merencanakan pengerjaan pemecahan masalah, pada indikator ketiga 30% (10 siswa) dapat menyelesaikan penyelesaian pemecahan masalah secara tepat,dan pada indikator keempat 26% (9 siswa) memeriksa kembali hasil yang diperoleh dengan menuliskan kembali hasil yang ditanyakan dalam soal dengan benar.

2. Kemampuan Pemecahan Masalah Matematika Siswa yang Diajar dengan Team Assisted Individualization

Hasil penelitian menunjukkan rata-rata nilai *post test*siswa yang diajarkan dengan model pembelajaran *Team Assisted Individualization* adalah 73,515 dikategorikan **sedang dalam memenuhi nilai KKM.** Adapun gambaran nilai post test siswa yang diajarkan dengan menggunakan model *Team Assisted Individualization* diantaranya:


Gambar 4.8 Hasil *Pos test* siswa Kemampuan Tinggi Kelas Eksperimen 2

Pada gambar tersebut, menunjukkan bahwa siswa telah mampu mengerjakan soal yang diberikan, dan kemampuan pemecahan masalah siswa tersebut termasuk kedalam kategori baik. Siswa sudah mampu menentukan apa yang diketahui dan ditanyakan, menunjukkan perencanaan pengerjaan, mengerjakan sesuai rencana yang diberikan, dan memeriksa kembali hasil pengerjaannya. Hal ini sesuai dengan indikator dari kemampuan pemecahan masalah itu sendiri.

VII FD B		
1. DIE :	40 m, 60 m, dan 65 m. Tenturan waktu minimal yang dibutuhkan mengelilingi taman!	40
Jwb:	K: S+S+S = 40+60+65 = 165 M	(*
	= 165 : 40 m menit = 4.125 m	C

Gambar 4.9 Hasil *Pos test* siswa Kemampuan Sedang Kelas Eksperimen 2

Pada gambar tersebut, menunjukkan bahwa siswa telah mampu mengerjakan soal yang diberikan, dan kemampuan pemecahan masalah siswa tersebut termasuk kedalam kategori baik. Siswa masih kurang mampu menentukan apa yang diketahui dan ditanyakan, namun siswa dapat menunjukkan perencanaan pengerjaan, mengerjakan sesuai rencana yang diberikan tetapi masih kurang tepat, siswa juga tidak memeriksa kembali jawaban dari yang telah dikerjakannya.

Gambar 4.10 Hasil Pos test siswa Kemampuan Rendah Kelas Eksperimen 2

Pada gambar tersebut, menunjukkan bahwa siswa kurang mampu mengerjakan soal yang diberikan, dan kemampuan pemecahan masalah siswa tersebut termasuk kedalam kategori kurang baik. Siswa tidak mampu menentukan apa yang diketahui dan ditanyakan, menunjukkan perencanaan pengerjaan, namun siswa masih belum menuntaskan pengerjaan soal tersebut dan siswa tidak memeriksa kembali pengerjaannya.

Dari hasil *post test* siswa pada kelas eksperimen 2 yang diajarkan dengan model Pembelajaran *Team Assisted Individualization* sebagian besar siswa sudah termasuk kedalam kategori baik, hanya ada beberapa siswa yang masih dalam kategori kurang baik. Sebanyak 58% (19 siswa) dapat memahami masalah dengan menuliskan yang diketahui dan ditanya pada soal dengan benar, 58% (19 siswa) dapat merencanakan pengerjaan pemecahan masalah dan 28% (9 siswa) menyelesaikan penyelesaian pemecahan masalah secara tepat, serta 18% (6 siswa) memeriksa kembali hasil yang diperoleh dengan menuliskan kembali hasil yang ditanyakan dalam soal dengan benar.

Dengan demikian untuk indikator 1 yaitu memahami masalah dengan menuliskan yang diketahui dan ditanya pada soal diperoleh bahwa pembelajaran dengan model PBL dan model TAI tidak jauh berbeda dan nilai PBL lebih tinggi. Pada indikator 1, 3 dan 4 yaitu memahami masalah, menyelesaikan penyelesaian pemecahan masalah dan memeriksa kembali hasil yang diperoleh bahwa pembelajaran dengan model PBL lebih tinggi dari model TAI. Indikator 2 yaitu merencanakan pengerjaan diperoleh diketahui TAI lebih tinggi dari PBL. Dapat disimpulkan bahwa model pembelajaran PBL lebih tinggi dari model pembelajaran TAI, hal ini dapat dilihat dari nilai rata-rata *post test* siswa dengan

model PBL = 73,7 dan model TAI = 73,515. Namun perbedaan antar kedua model tersebut tidak terlalu besar. Jika dilihat dari proses belajar siswa, antara kelas yang menggunakan model pembelajaran PBL dan TAI juga tidak terjadi perbedaan yang signifikan.

C. Keterbatasan Penelitian

Penelitian ini telah direncanakan dengan sebaik baiknya dan berbagai upaya telah dilakuakn agar memperoleh hasil yang optimal. Namun, masih banyak beberapa factor yang sulit dikendalikan sehingga penelitian ini memiliki keterbatasan yaitu sebagai berikut :

- a) Diawal pembelajaran strategi pembelajaran Team Asissted Individualized agak sulit diterapkan karena kebiasaan siswa yang belajar mengharapkan pengetahuan dari guru.
- b) Terdapat beberapa siswa yang kurang aktif dalam kelompok
- c) Tidak semua siswa mudah menguasai materi pelajaran
- d) Penelitian ini hanya dilakukan satu kelas pada Problem Based Learning dan satu kelas Team Asissted Individualized pada sehingga generalisasi tidak dapat dilakukan secara keseluruhan.

BAB V

KESIMPULAN, IMPLIKASI DAN SARAN

A. Kesimpulan

Kesimpulan yang dapa dikemukakan peneliti dalam penelitian sesuai dengan tujuan dan permasalahan yang telah dirumuskan, serta berdasarkan hasil analisis yang telah dilakukan adalah :

- Kemampuan pemecahan masalah matematika siswa pada kelas ekperimen yang diajar dengan menggunakan model pembelajaran kooperatif tipe Problem Based Learning (PBL) di kelas VII MTs. Ex PGA UNIVA Medan pada materi segitiga berada dalam kategori sedang dilihat dari rata-rata Posttest adalah 73,7.
- Kemampuan pemecahan masalah matematika siswa pada kelas ekperimen yang diajar dengan menggunakan model pembelajaran kooperatif tipe Team Assisted Individualization (TAI) di kelas VII MTs. Ex PGA UNIVA Medan pada materi segitiga berada dalam kategori sedang dilihat dari rata-rata Posttest adalah 73,515.
- 3. Tidak terdapat perbedaan terhadap kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan model pembelajaran $Problem\ Based\ Learning\ (PBL)\ dan\ Team\ Assisted\ Individualization$ (TAI) di kelas VII MTs. Ex PGA UNIVA Medan pada materi segitga. Hal ini terbukti dari hasil uji t menggunakan nilai N-Gain menunjukkan bahwa $t_{hitung} < t_{tabel}$ atau 0,5 < 1,997, sehingga H_a ditolak dan H_0 diterima.

B. Implikasi

Berdasarkan temuan dan kesimpulan sebelumnya, maka implikasi dalam penelitian ini adalah sebagai berikut:

Pada penelitian yang dilakukan, terlihat bahwa siswa pada kelas eksperimen yang diajar dengan menggunakan model pembelajaran *Problem Based Learning* (PBL) dan kelas eksperimen yang diajar dengan menggunakan model pembelajaran kooperatif tipe *Team Assited Individualization* (TAI) menunjukkan bahwa kemampuan pemecahan masalah matematika berada dalam kategori sedang.

Pada kelas eksperimen 1 yang diajar dengan model pembelajaran *Problem Based Learning* (PBL) menunjukkan bahwa kemampuan pemecahan masalah matematika berada dalam kategori sedang yang sebelumnya berada dalam kategori sangat rendah yaitu 47,939. Dengan model pembelajaran *Problem Based Learning* (PBL) siswa lebih aktif dalam pembelajaran, dikarenakan siswa dapat berdiskusi langsung dengan teman kelompoknya dan bersaing dengan kelompok lain untuk mendapatkan perolehan nilai yang lebih baik. Selain lebih aktif, model pembelajaran *Problem Based Learning* (PBL) dapat memotivasi serta dapat melatih siswa dalam bekerjasama dan bertanggung jawab terhadap tugas mereka dengan menampilkan atau mempresentasekan jawaban. Model pembelajaran *Problem Based Learning* (PBL) juga dapat menumbuhkan persaingan antar siswa dalam proses pembelajaran. Persaingan itu terlihat dari antusias saat menjawab pertanyaan yang berikan dan pada saat siswa bertanya kepada teman dalam kelompok dan guru.

Sementara di kelas eksperimen yang diajarkan dengan pembelajaran kooperatif tipe Team Assited Individualization (TAI) membuat siswa selalu aktif dengan melakukan berbagai kegiatan untuk menguasai bahan pelajaran sepenuhnya. Dalam pembelajaran ini siswa diminta untuk menjelaskan materi kepada siswa lain dalam kelompok masing-masing, mendengarkan penjelasan dari teman secara aktif, bertanya dengan siswa-guru, berdiskusi dengan siswa lain, membuat dan menanggapi pertanyaan serta berargumentasi, sehingga siswa menjadi lebih aktif dan memiliki tanggung jawab dalam kelompok belajar serta memiliki motivasi tersendiri dalam belajar. Pembelajaran kooperatif tipe Team Assited Individualization (TAI) dapat membuat suasana belajar menjadi lebih menyenangkan, siswa juga diberikan kesempatan untuk mengembangkan kemampuan berfikir dan pembelajaran menjadi lebih efektif. Hal ini terbukti saat penelitian berlangsung, siswa terihat lebih santai dan semangat, siswa juga menjadi lebih kreatif dan hasil belajar siswa pun menjadi lebih baik.

Dalam proses pembelajaran, kedua model tersebut memberikan pengaruh yang menjadikan siswa lebih aktif dan melatih siswa bekerja sama serta memiliki tanggung jawab dalam kelompok belajar karena dalam pembelajaran siswa dapat berdiskusi langsung, bertanya dengan siswa lain dan guru, membuat dan menanggapi pertanyaan serta berargumentasi.

C. Saran

Berdasarkan hasil dari penelitian ini, maka peneliti menyarankan kepada berbagai pihak sebagai berikut :

- Bagi guru mata pelajaran matematika agar dapat memilih model pembelajaran yang paling sesuai dengan pokok bahasan yang diajarkan seperti model pembelajaran kooperatif tipe *Problem Based Learning* (PBL) dan *Team Assisted Individualization* (TAI).
- 2. Sebaiknya dalam proses pembelajaran guru harus mampu mengeksplorasi pengetahuan yang dimiliki siswa, mengefektifkan waktu belajar yang ada dan membuat siswa menjadi aktif dalam pembelajaran seperti penemuan individual atau kelompok serta membuat pelajaran diingat dalam jangka waktu yang panjang oleh siswa.
- 3. Bagi peneliti selanjutnya yang ingin melakukan penelitian sejenis disarankan untuk mengembangkan penelitian ini dengan mempersiapkan sajian materi lain, memperhatikan keberhasilan dan kelemahan penelitian ini guna meningkatkan hasil penelitian menjadi lebih baik.

DAFTAR PUSTAKA

- Ainun, Nur. 2015. Peningkatan Kemampuan Penalaran Matematis Siswa Madrasah Aliyah Melalui Model Pembelajaran Kooperatif Tipe Teams Games Tournament, Jurnal Peluang, Volume 4, Nomor 1, Oktober 2015, ISSN: 2302-5158.
- Amri, Sofan. 2013. *Pengembangan Dan Model Pembelajaran Dalam Kurikulum 2013*. Jakarta: Prestasi Pustakaraya.
- Angkotasan, Nurma. 2013. Model PBL dan Cooperative Learning Tipe TAI Ditinjau Dari Aspek Kemampuan Berpikir Reklektif Dan Pemecahan Masalah Matematika, Jurnal Pythagoras, Volume 8-Nomor 1, Juni 2013, ISSN: 1978-4538.
- Arikunto, Suharsimi. 2013. *Dasar dasar Evaluasi Pendidikan*. Jakarta: Bumi Aksara.
- Engkoswara. 2015. Administrasi Pendidikan. Bandung: Alfabeta.
- Haidir. 2012. Strategi Pembelajaran. Medan: Perdana Publishing.
- Hamdayama. 2014. *Model dan Metode Pembelajaran Kreatif Dan Berkarakter*. Bogor: Ghalia Indonesia.
- Hartono, Yusuf. 2014. *Matematika; Strategi Pemecahan Masalah*. Yogyakarta : Graha ilmu.
- Huda, Miftahul. 2014. *Model-Model Pengajaran dan Pembelajaran*. Yogyakarta: Pustaka Belajar.
- Indarwati. 2014. Peningkatan Kemampuan Pemecahan Masalah Matematika Melalui Penerapan Problem Based Learning Untuk Siswa Kelas V, Satya Widya, Vol. 30, No.1.
- Jaya, Indra. 2010. Statistik Penelitian Untuk Pendidikan. Medan: Cita Pustaka.
- Jihad, Asep & Haris, Abdul. 2013. Evaluasi Pembelajaran. Yogyakarta: Multi Pressindo.
- Manalu, Effendi. 2016. Strategi Belajar Mengajar Dari Didaktik Metodik Modern Dengan Menumbuh Kembangkan Kognitif Tingkat Tinggi, Sikap, Dan Keterampilan Kreatif. Medan: Universitas Negeri Medan.
- Masni. Implementasi Pendekatan Contextual Teaching And Learning Dalam Pembelajaran Matematika Pada Materi Pecahan. Prosiding Seminar Nasional. Volume 02, Nomor 1 Issn 2443-1109.

- Minarni, Ani. 2012. Pengaruh Pembelajaran Berbasis Masalah Terhadap Kemampuan Pemecahan Masalah Matematis. Prosiding Yogyakarta:MP 92, ISBN: 978-979-16353-8-7.
- Muhammad, Samsiah . 2017. Penerapan Model Pembelajaran Kooperatif Tipe TAI (Team Assisted Individualization) Untuk Meningkatkan Hasil Belajar Siswa Pada Materi Persamaan Kuadrat Di Kelas X MIPA 2 SMA Negeri 5 Palu, Jurnal Aksioma, Volume 6 Nomor 2, September 2017. ISSN: 1412-4505.
- Ngalimun. 2017. Strategi Pendidikan. Yogyakarta: Parama Ilmu.
- Putri, Dita Amelia. 2018. Peningkatan Kemampuan Berpikir Kritis Siswa Melalui Metode Pembelajaran Team Games Tournament Dan Team Assisted Individualization, Jurnal Manajerial Vol. 3 No.4 Januari 2018, ISSN: 1412 6613, E-ISSN: 2527 4570.
- Rosdiana. 2009. *Pendidikan Suatu Pengantar*. Medan : Cita Pustaka Media Perintis
- Rusman. 2014. *Model-Model Pembelajaran Mengembangkan Profesionalisme Guru*. Jakarta: Rajagrafindo Persada.
- Samin, Mara. 2016. *Telaah Kurikulum; Pendidikan Menengah Umum/Sederajat*. Medan: Perdana Publishing.
- Sanjaya, Wina. 2015. *Kurikulum Dan Pembelajaran*. Jakarta: Prenadamedia Group.
- Shoimin, Aris. 2016. 68 Model Pembelajaran Inovatif Dalam Kurikulum 2013. Yogyakarta: Ar-Ruzz Media.
- Sudjana. 2005. Metoda Statistik. Bandung: Tarsito.
- Suprijono, Agus. 2010. Cooperatif Learning Teori dan Aplikasi Paikem.

 Yogyakarta: Pustaka Belajar.
- Suprijono, Agus. 2012. *Cooperative Learning Teori dan Aplikasi PAIKEM*. Yogyakarta: Pustaka Belajar.
- Syaukani. 2015. *Metode Penelitian (pedoman praktis penelitian dalam bidang pendidikan.* Medan: Perdana Publishing.
- Trianto. 2014. Model Pembelajaran Terpadu. Jakarta: Bumi Aksara.
- Ulya, Himmatul. 2015. Hubungan Gaya Kognitif Dengan Kemampuan Pemecahan Masalah Matematika Siswa, Jurnal Konseling GUSJIGANG,

Program Studi Bimbingan Dan Konseling FKIP Universitas Muria Kudus : Vol. 1 No. 2 Tahun 2015 ISSN 2460-1187.

Winarni. 2016. Matematika Untuk PGSD. Bandung: Pt Remaja Rosdakarya.

Yarmani, Ayu. 2013. Analisis Kemampuan Pemecahan Masalah Matematis siswa Kelas XI MIPA SMa Negeri 1 Kota Jambi, Jurnal Ilmiah Dikdaya, Jambi: Universitas Batanghari.

Yusuf, Muri. 2015. Asesmen dan Evaluasi Pendidikan. Jakarta: Kencana.

Zuhri, Moh. 1992. Terjemah Sunan At-Tirmidzi Jilid 4, Semarang: CV Asy-Syifa

LAMPIRAN

Lampiran 1

LEMBAR KERJA SISWA KELAS EKSPERIMEN 1

Mata pelajaran : Matematika

Kelas/semester : VII/I

Pertemuan : Pertama

Materi pokok : segitiga

Alokasi waktu : 2 x 40 Menit

Nama Siswa :

A. Tujuan Pembelajaran Aspek Pengetahuan dan Keterampilan

Dengan mengikuti kegiatan pembelajaran pada pertemuan ini, diharapkan siswa mampu:

- 1. Menentukan luas dan keliling segitiga
- 2. Menentukan luas dan keliling segitiga yang berkaitan dengan konsep segitiga
- Mampu menyelesaikan permasalahan sehari-hari yang menyangkut segitiga

B. Petunjuk

- Peserta didik membentuk kelompok, setiap kelompok terdiri dari 4-5 anggota kelompok.
- Berdiskusilah dan saling memberikan masukan dan saran dalam menyelesaikan masalah yang diberikan.
- 3. Bertanyalah kepada guru jika mengalami kesulitan.

4. Kerjakan dengan sungguh-sungguh

C. Lembar Kerja Siswa

Masalah

- 1. Sebuah kolam ikan berbentuk segitiga sama sisi. Panjang sisinya 16 meter. Kolam tersebut akan dikelilingi batu bata. Tiap meter membutuhkan 25 batu bata. Berapa batu bata yang dibutuhkan untuk mengelilingi kolam ikan tersebut?
- 2. Hanum gemar berolahraga. Pada suatu hari hanum berlari mengelilingi lapangan yang berbentuk segitiga dengan panjang sisi-sisinya 20 m, 30m, dan 40m. pada saat itu hanum hanya mampu berlari 3 kali putaran. Berapakah panjang lintasan lari yang dilakukan hanum?

GOOD LUCK

LEMBAR KERJA SISWA KELAS EKSPERIMEN

Mata pelajaran : Matematika

Kelas/semester : VII/I

Pertemuan : Pertama

Materi pokok : segitiga

Alokasi waktu : 2 x 40 Menit

Nama Siswa :

A. Tujuan Pembelajaran Aspek Pengetahuan dan Keterampilan

Dengan mengikuti kegiatan pembelajaran pada pertemuan ini,

diharapkan siswa mampu:

1. Menentukan luas dan keliling segitiga

2. Menentukan luas dan keliling segitiga yang berkaitan dengan konsep

segitiga

3. Mampu menyelesaikan permasalahan sehari-hari yang menyangkut

segitiga.

B. Petunjuk

1. Peserta didik membentuk kelompok, setiap kelompok terdiri dari 4-5

anggota kelompok.

2. Berdiskusilah dan saling memberikan masukan dan saran dalam

menyelesaikan masalah yang diberikan.

3. Bertanyalah kepada guru jika mengalami kesulitan.

4. Kerjakan dengan sungguh-sungguh

C. Lembar Kerja Siswa

Masalah

- 1. Sebuah kolam ikan berbentuk segitiga sama sisi. Panjang sisinya 16 meter. Kolam tersebut akan dikelilingi batu bata. Tiap meter membutuhkan 25 batu bata. Berapa batu bata yang dibutuhkan untuk mengelilingi kolam ikan tersebut?
- 2. Hanum gemar berolahraga. Pada suatu hari hanum berlari mengelilingi lapangan yang berbentuk segitiga dengan panjang sisi-sisinya 20 m, 30m, dan 40m. pada saat itu hanum hanya mampu berlari 3 kali putaran. Berapakah panjang lintasan lari yang dilakukan hanum?

GOOD LUCK

Lampiran 2

Kunci jawaban LKS

No	Uraian
1.	a. Memahami masalah
	Dik: $sisi = 16 m$
	Batu bata yang dibutuhkan/ m = 25 batu bata
	Dit: tentukan berapa banyak batu bata yang dibutuhkan?
	b. Merencanakan pemecahan masalah
	K = S + S + S
	Batu bata yang dibutuhkan/ m = 25 batu bata, maka:
	Batu bata yang dibutuhkan = $K \times 25$
	c. Melakukan perencanaan pemecahan masalah
	K = S + S + S
	= 16 m + 16 m + 16 m
	=48 m
	Batu bata yang dibutuhkan = $K \times 25$
	=48~m~ imes~25
	= 1200
	d. Memeriksa kembali
	Maka batu bata yang diperlukan untuk mengelilingi kolam
	ikan tersebut adalah sebanyak 1200 batu bata.

2.

a. Memahami masalah

Dik: sisi = 20 m, 30 m, 40m.

Hanum berlari sebanyak 3 kali putaran

Dit: berapa panjang lintasan lari yang dilakukan hanum?

b. Merencanakan pemecahan masalah

$$K = S + S + S$$

Panjang lintasan = $K \times 3$

c. Melakukan perencanaan pemecahan masalah

$$K = S + S + S$$
= 20 m + 30 m + 40 m
= 90 m

Panjang lintasan =
$$K \times 3$$

= $90 m \times 3$
= $270 m$

d. Memeriksa kembali

Maka panjang lintasan yang dilakukan hanum adalah 270 m.

Lampiran 3

Pedoman Penskoran Pemecahan Masalah

Aspek yang dinilai	Skor	Keterangan							
Memahami masalah	0	Salah menginterpretasikan soal atau tidak ada jawaban sama sekali.							
	1	Salah menginterpretasikan sebagaian soal atau mengabaikan kondisi soal.							
	2	Memahami masalah atau soal secara lengkap.							
Menyusun Rencana	0	Strategi yang digunakan tidak relevan atau tidak ada strategi sama sekali							
	1	Strategi yang digunakan kurang dapat dilaksanakan dan tidak dapat dilanjutkan							
	2	Strategi yang digunakan benar tetapi mengarah pada jawaban yang salah atau tidak mencoba strategi lain							
	3	Menggunakan beberapa prosedur yang mengarah kepada jawaban yang benar.							
Menyelesaikan masalah	0	Tidak ada jawaban sama sekali							
	1	Menggunakan beberapa prosedur yang mengarah kepada jawaban yang benar.							
	2	Hasil salah atau sebagaian hasil salah, tetapi salah perhitungan saja							
	3	Hasil dan prosedur benar							
Memeriksa kembali hasil perhitungan	0	Tidak ada pemeriksaaan atau tidak ada keterangan apapun.							
	1	Ada pemeriksaan tetapi tidak tuntas atau tidak lengkap.							
	2	Pemeriksaan dilaksanakan dengan lengkap untuk melihat kebenaran atau hasil proses.							

Lampiran 4

UJI VALIDITAS BUTIR INSTRUMEN

NAMA		Butir I	Y	Y2			
RESPONDEN	1	2	3	4	5		
1	7	7	7	6	7	34	1156
2	9	7	8	8	7	39	1521
3	6	5	7	5	5	28	784
4	7	8	6	7	5	33	1089
5	8	9	10	7	8	42	1764
6	5	6	8	5	7	31	961
7	6	5	6	4	5	26	676
8	8	7	9	7	6	37	1369
9	7	8	8	7	9	39	1521
10	9	8	10	6	7	40	1600
11	9	7	8	8	7	39	1521
12	9	8	7	9	7	40	1600
13	7	8	6	9	8	38	1444
14	8	9	8	7	7	39	1521
15	6	7	7	5	6	31	961
16	5	7	8	8	6	34	1156
17	8	8	9	9	7	41	1681
18	9	7	6	6	5	33	1089
19	8	9	9	6	7	39	1521
20	6	7	9	6	6	34	1156
21	9	8	7	9	8	41	1681
22	7	9	10	8	7	41	1681
23	9	8	8	7	6	38	1444
24	9	10	8	8	8	43	1849
25	8	7	6	7	5	33	1089
26	9	6	8	6	5	34	1156
27	9	7	5	6	5	32	1024
28	7	6	7	8	7	35	1225
29	9	10	8	8	9	44	1936
30	6	7	6	6	9	34	1156
31	8	8	7	9	8	40	1600
32	8	8	8	8	7	39	1521
33	4	7	5	6	7	29	841

ΣX	249	248	249	231	223	1200	44294
ΣX^2	1943	1910	1937	1675	1555	\sum y	\sum y2
ΣΧΥ	9186	9164	9171	8547	8226		

a. Uji validitas butir soal nomor 1

$$r_{xy} = \frac{N \sum xy - (\sum x)(\sum y)}{\sqrt{\{(N \sum x^2) - (\sum x)^2\}\{(N \sum y^2) - (\sum y)^2\}}}$$

$$r_{xy} = \frac{33 \times 9186 - 249 \times 1200}{\sqrt{\{(33 \times 1943) - (62001)\}\{(33 \times 44294) - (1440000)\}}}$$

$$r_{xy} = \frac{303138 - 298800}{\sqrt{\{64119 - 62001\}\{(1461702 - 1440000)\}}}$$

$$r_{xy} = \frac{4338}{\sqrt{2118 \times 21702}}$$

$$r_{xy} = \frac{4338}{\sqrt{45964836}}$$

$$r_{xy} = \frac{4338}{6779.73}$$

$$r_{xy} = 0,639$$

Butir soal nomor 1 dikatakan valid, karena $r_{xy} > r_{tabel}$ yaitu 0,639 > 0,344

b. Uji validitas butir soal nomor 2

$$r_{xy} = \frac{N \sum xy - (\sum x)(\sum y)}{\sqrt{\{(N \sum x^2) - (\sum x)^2\}\{(N \sum y^2) - (\sum y)^2\}}}$$

$$r_{xy} = \frac{33 \times 9164 - 248 \times 1200}{\sqrt{\{(33 \times 1943) - (61504)\}\{(33 \times 44294) - (1440000)\}}}$$

$$r_{xy} = \frac{302412 - 297600}{\sqrt{\{64119 - 61504\}\{(1461702 - 1440000)\}}}$$

$$r_{xy} = \frac{4812}{\sqrt{2615 \times 21702}}$$

$$r_{xy} = \frac{4812}{\sqrt{56750730}}$$

$$r_{xy} = \frac{4812}{7533,308}$$

$$r_{xy} = 0.638$$

Butir soal nomor 2 dikatakan valid, karena $r_{xy} > r_{tabel}$ yaitu 0,638 > 0,344

c. Uji validitas butir soal nomor 3

$$r_{xy} = \frac{N \sum xy - (\sum x)(\sum y)}{\sqrt{\{(N \sum x^2) - (\sum x)^2\}\{(N \sum y^2) - (\sum y)^2\}}}$$

$$r_{xy} = \frac{33 \times 9171 - 249 \times 1200}{\sqrt{\{(33 \times 1937) - (62001)\}\{(33 \times 44294) - (1440000)\}}}$$

$$r_{xy} = \frac{302643 - 298800}{\sqrt{\{63921 - 62001\}\{(1461702 - 14400000)\}}}$$

$$r_{xy} = \frac{3843}{\sqrt{1920 \times 21702}}$$

$$r_{xy} = \frac{3843}{\sqrt{41667840}}$$

$$r_{xy} = \frac{3843}{6455,063}$$

$$r_{xy} = 0,56$$

butir soal nomor 3 dikatakan valid, karena $r_{xy} > r_{tabel}$ yaitu 0.56 > 0.344 d. Uji validitas butir soal nomor 4

$$r_{xy} = \frac{N\sum xy - (\sum x)(\sum y)}{\sqrt{\{(N\sum x^2) - (\sum x)^2\}\{(N\sum y^2) - (\sum y)^2\}}}$$

$$r_{xy} = \frac{33 \times 8547 - 231 \times 1200}{\sqrt{\{(33 \times 1675) - (53361)\}\{(33 \times 44294) - (1440000)\}}}$$

$$r_{xy} = \frac{282051 - 277200}{\sqrt{\{55275 - 53361\}\{(1461702 - 1440000)\}}}$$

$$r_{xy} = \frac{4851}{\sqrt{1914 \times 21702}}$$

$$r_{xy} = \frac{4851}{\sqrt{41537628}}$$

$$r_{xy} = \frac{4851}{6444,96}$$

$$r_{xy} = 0,752$$

Butir soal nomor 4 dikatakan valid, karena $r_{xy} > r_{tabel}$ yaitu 0,752 > 0,344 e. Uji validitas butir soal nomor 5

$$r_{xy} = \frac{N \sum xy - (\sum x)(\sum y)}{\sqrt{\{(N \sum x^2) - (\sum x)^2\}\{(N \sum y^2) - (\sum y)^2\}}}$$

$$r_{xy} = \frac{33 \times 8226 - 223 \times 1200}{\sqrt{\{(33 \times 1555) - (49729)\}\{(33 \times 44294) - (144000)\}}}$$

$$r_{xy} = \frac{271458 - 267600}{\sqrt{\{51315 - 49729\}\{(1461702 - 1440000)\}}}$$

$$r_{xy} = \frac{3858}{\sqrt{1586 \times 21702}}$$

$$r_{xy} = \frac{3858}{\sqrt{34419372}}$$

$$r_{xy} = \frac{3858}{5866,802}$$

$$r_{xy} = 0,657$$

butir soal nomor 5 dikatakan valid, karena $r_{xy} > r_{tabel}$ yaitu 0,657 > 0,344

	Taraf Sig	gnifikan		Taraf Sig	gnifikan	_	Taraf Sign	nifikan
n	5%	1%	n	5%	1%	n	5%	1%
3	0,997	0,999	27	0,381	0,487	55	0,266	0,345
4	0,950	0,990	28	0,374	0,478	60	0,254	0,330
5	0,878	0,959	29	0,367	0,470	65	0,244	0,317
6	0,811	0,917	30	0,361	0,463	70	0,235	0,306
7	0,754	0,874	31	0,355	0,456	75	0,227	0,296
8	0,707	0,834	22		0,449	80	0,220	0,286
9	0,666	0,798	33	0.344	0,442	85	0,213	0,278
10	0,632	0,765	34	0,339	0,436	90	0,207	0,270
l								
11	0,602	0,735	35	0,334	0,430	95	0,202	0,263
12	0,576	0,708	36	0,329	0,424	10	0,195	0,256
13	0,553	0,684	37	0,325	0,418	12	0,176	0,230
14	0,532	0,661	38	0,320	0,413	15	0,159	0,210
15	0,514	0,641	39	0,316	0,408	17	0,148	0,194
16	0,497	0,623	40	0,312	0,403	20	0,138	0,181
17	0,482	0,606	41	0,308	0,398	30	0,113	0,148
18	0,468	0,590	42	0,304	0,393	40	0,098	0,128
19	0,456	0,575	43	0,301	0,389	50	0,088	0,115
20	0,444	0,561	44	0,297	0,384	60	0,080	0,105
						1		
21	0,433	0,549	45	0,294	0,380	700	0,074	0,097
22	0,423	0,537	46	0,291	0,376	800	0,070	0,091
23	0,413	0,526	47	0,288	0,372	900	0,065	0,086
24	0,404	0,515	48	0,284	0,368	000	0,062	0,081
25	0,396	0,505	49	0,281	0,364			
26	0,388	0,496	50	0,279	0,361			

Lampiran 6
HASIL PERHITUNGAN UJI RELIABILITAS

NAMA		Butir Pernyataan ke					Y2
RESPONDEN	1	2	3	4	5	1	
1	7	7	7	6	7	34	1156
2	9	7	8	8	7	39	1521
3	6	5	7	5	5	28	784
4	7	8	6	7	5	33	1089
5	8	9	10	7	8	42	1764
6	5	6	8	5	7	31	961
7	6	5	6	4	5	26	676
8	8	7	9	7	6	37	1369
9	7	8	8	7	9	39	1521
10	9	8	10	6	7	40	1600
11	9	7	8	8	7	39	1521
12	9	8	7	9	7	40	1600
13	7	8	6	9	8	38	1444
14	8	9	8	7	7	39	1521
15	6	7	7	5	6	31	961
16	5	7	8	8	6	34	1156
17	8	8	9	9	7	41	1681
18	9	7	6	6	5	33	1089
19	8	9	9	6	7	39	1521
20	6	7	9	6	6	34	1156
21	9	8	7	9	8	41	1681
22	7	9	10	8	7	41	1681
23	9	8	8	7	6	38	1444
24	9	10	8	8	8	43	1849
25	8	7	6	7	5	33	1089
26	9	6	8	6	5	34	1156
27	9	7	5	6	5	32	1024
28	7	6	7	8	7	35	1225
29	9	10	8	8	9	44	1936
30	6	7	6	6	9	34	1156
31	8	8	7	9	8	40	1600
32	8	8	8	8	7	39	1521
33	4	7	5	6	7	29	841

ΣX	249	248	249	231	223	1200	44294
ΣX^2	1943	1910	1937	1675	1555	\sum y	∑ y 2
SXY	9186	9164	9171	8547	8226		

Uji reliabilitas soal

$$r_{II} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\sum_{i=1}^{6} \sigma_i^2}{\sigma_t^2}\right)$$

$$\sigma_t^2 = \frac{\sum X^2 - \frac{(\sum X)^2}{N}}{N}$$

$$\sigma_t^2 = \frac{\sum Y^2 - \frac{(\sum Y)^2}{N}}{N}$$

Menghitung varians tiap skor

1. Untuk menghitung varians X_1 (butir soal no 1)

$$\sigma_t^2 = \frac{\sum X^2 - \frac{(\sum X)^2}{N}}{N}$$

$$\sigma_t^2 = \frac{1943 - \frac{62001}{33}}{33}$$

$$\sigma_t^2 = 1,944$$

2. Untuk menghitung varians X_2 (butir soal no 2)

$$\sigma_t^2 = \frac{\sum X^2 - \frac{(\sum X)^2}{N}}{N}$$

$$\sigma_t^2 = \frac{1910 - \frac{61504}{33}}{33}$$

$$\sigma_t^2 = 1,401$$

3. Untuk menghitung varians X_3 (butir soal no 3)

$$\sigma_t^2 = \frac{\sum X^2 - \frac{(\sum X)^2}{N}}{N}$$

$$\sigma_t^2 = \frac{1937 - \frac{620011}{33}}{33}$$

$$\sigma_t^2 = 1,763$$

4. Untuk menghitung varians X_4 (butir soal no 4)

$$\sigma_t^2 = \frac{\sum X^2 - \frac{(\sum X)^2}{N}}{N}$$

$$\sigma_t^2 = \frac{1675 - \frac{53361}{33}}{33}$$

$$\sigma_t^2 = 1,757$$

5. Untuk menghitung varians X₅ (butir soal no 5)

$$\sigma_t^2 = \frac{\sum X^2 - \frac{(\sum X)^2}{N}}{N}$$

$$\sigma_t^2 = \frac{1555 - \frac{49729}{33}}{33}$$

$$\sigma_t^2 = 1,456$$

Varians total X = 8,321

6. Untuk menghitung varians Y

$$\sigma_t^2 = \frac{\sum Y^2 - \frac{(\sum Y)^2}{N}}{N}$$

$$\sigma_t^2 = \frac{44294 - \frac{1440000}{33}}{33}$$

$$\sigma_t^2 = 19,928$$

Jumlah varians total adalah 28,249

Menghitung reliabilitas

$$r_{II} = \left(\frac{n}{n-1}\right) \left(1 - \frac{\sum_{i=1}^{6} \sigma_{i}}{\sigma_{t}^{2}}\right)$$

$$r_{II} = \left(\frac{33}{33-1}\right) \left(1 - \frac{1,944 + 1,401 + 1,763 + 1,757 + 1,456}{28,249}\right)$$

$$r_{II} = (1,03125) \left(1 - \frac{8,321}{28,249}\right)$$

$$r_{II} = (1,03125)(1 - 0,2945590)$$

$$r_{II} = (1,03125)(0,705441)$$

$$r_{II} = 0,72748$$

Maka reliabilitas soal adalah 0,72748 termasuk kedalam kategori tinggi.

Perhitungan Uji Taraf Kesukaran Test Hasil Belajar Matematika

Langkah langkah perhitungan uji taraf kesukaran butir test yaitu sebagai berikut:

- 1. Menentukan nilai S_T = Jumlah Skor yang diperoleh seluruh siswa pada satu butir soal
- 2. Menentukan nilai I_T = Jumlah skor ideal/ maksimum yang diperoleh pada butir soal
- 3. Menemukan nilai P = Tingkat kesukaran tes
- 4. Menentukan criteria indeks kesukaran
 - a. Taraf kesukaran soal nomor 1

Diketahui

Skor seluruh siswa = 249

Skor maksimal = 330

Taraf kesukaran =
$$\frac{249}{330}$$
 = 0,75 (mudah)

b. Taraf kesukaran soal nomor 2

Diketahui

Skor seluruh siswa = 248

Skor maksimal = 330

Taraf kesukaran =
$$\frac{248}{330}$$
 = 0,75 (mudah)

c. Taraf kesukaran soal nomor 3

Diketahui

Skor seluruh siswa = 249

Skor maksimal = 330

Taraf kesukaran =
$$\frac{249}{330}$$
 = 0,75 (mudah)

d. Taraf kesukaran soal nomor 4

Diketahui

Skor seluruh siswa = 231

Skor maksimal = 330

Taraf kesukaran =
$$\frac{231}{330}$$
 = 0,7 (mudah)

e. Taraf kesukaran soal nomor 5

Diketahui

Skor seluruh siswa = 223

Skor maksimal = 330

Taraf kesukaran = $\frac{223}{330}$ = 0,67 (cukup)

Tabel Daya Pembeda Soal

No	NAMA		Butir	Pernyata	an ke		Y
1	RESPONDEN	1	2	3	4	5	
2	siswa k.atas	9	10	8	8	9	44
3	siswa k.atas	9	10	8	8	8	43
4	siswa k.atas	8	9	10	7	8	42
5	siswa k.atas	8	8	9	9	7	41
6	siswa k.atas	9	8	7	9	8	41
7	siswa k.atas	7	9	10	8	7	41
8	siswa k.atas	9	8	10	6	7	40
9	siswa k.atas	9	8	7	9	7	40
10	siswa k.atas	8	8	7	9	8	40
11	siswa k.atas	9	7	8	8	7	39
12	siswa k.atas	7	8	8	7	9	39
13	siswa k.atas	9	7	8	8	7	39
14	siswa k.atas	8	9	9	6	7	39
15	siswa k.atas	8	9	8	7	7	39
16	siswa k.atas	8	8	8	8	7	39
17	siswa k.atas	7	8	6	9	8	38
		9	8	8	7	6	38
	Jumlah	132	134	131	126	121	

No	NAMA		Butir Pernyataan ke				
	RESPONDEN	1	2	3	4	5	
1	Siswa k.bawah	8	7	9	7	6	37
2	Siswa k.bawah	7	6	7	8	7	35
3	Siswa k.bawah	7	7	7	6	7	34
4	Siswa k.bawah	5	7	8	8	6	34
5	Siswa k.bawah	6	7	9	6	6	34
6	Siswa k.bawah	9	6	8	6	5	34
7	Siswa k.bawah	6	7	6	6	9	34
8	Siswa k.bawah	7	8	6	7	5	33
9	Siswa k.bawah	9	7	6	6	5	33
10	Siswa k.bawah	8	7	6	7	5	33
11	Siswa k.bawah	9	7	5	6	5	32
12	Siswa k.bawah	5	6	8	5	7	31
13	Siswa k.bawah	6	7	7	5	6	31

14	Siswa k.bawah	4	7	5	6	7	29
15	Siswa k.bawah	6	5	7	5	5	28
16	Siswa k.bawah	6	5	6	4	5	26
	Jumlah	108	106	110	98	96	

a. Daya pembeda soal pada butir soal nomor 1

$$DB = \frac{S_A - S_B}{I_A}$$

$$= \frac{132 - 108}{10}$$

$$= 2.4$$

b. Daya pembeda soal pada butir soal nomor 2

$$DB = \frac{S_A - S_B}{I_A}$$

$$= \frac{134 - 106}{10}$$

$$= 2.8$$

c. Daya pembeda soal pada butir soal nomor 3

$$DB = \frac{S_A - S_B}{I_A}$$

$$= \frac{131 - 110}{10}$$

$$= 2.1$$

d. Daya pembeda soal pada butir soal nomor 4

$$DB = \frac{S_A - S_B}{I_A}$$
$$= \frac{126 - 98}{10}$$

e. Daya pembeda soal pada butir soal nomor 5

$$DB = \frac{S_A - S_B}{I_A}$$

$$=\frac{121-96}{10}$$

Lampiran 9 Nilai Pretest dan Pos test Siswa Kelas Eksperimen 1

No	Nama Siswa	Nilai Pre Test	Nilai Post Test
1	Ahmad Furqan Adila	26	50
2	Alfina Dwina Rangkuti	32	66
3	Alifia Zahra Tanjung	38	64
4	Andika Riyanda Noval	52	72
5	Aura	70	92
6	Chairil Umam	28	68
7	Dewi Auliani	62	80
8	Dewi Wulandari	34	62
9	Dimas Akbar Ramadhan	54	70
10	Dita Aufareza	36	50
11	Erva Dyana Puri	36	46
12	Fadhillah Sabrina Zaylani	68	90
13	Irfan Munazir	50	74
14	Lira Chandra Khalisysia	46	72
15	Muhammad Agus Dewantara Muhammad Syukron	38	70
16	Jazila Syukton	40	74
17	Nabila Putri	40	72
18	Nadia Prameysy	54	90
19	Najwa Fattah Sipahutar	60	86
20	Naura Siva Tanjung	54	70
21	Nazla Salsabila Saragih	68	80
22	Nur Wafiq Fadillah Anggraini	48	72
23	Permata Maharani Arseto	24	68
24	Rahma Azura Tanjung	52	80
25	Rama Dina	60	86
26	Ria Lestari	24	72
27	Rika Novita Bahar	42	68
28	Riki Bayu Andika	62	82
29	Siti Hadijah	46	74
30	Syafrizal	66	88
31	Vebriantin	46	74
32	Yuzan Fadillah	56	80
33	Zayyan Murtaja	70	90

Nilai Pretest dan Postest Siswa Kelas Eksperiment 2

No	Nama Siswa	Nilai Pre Test	Nilai Post Test
1	Atha Nabila	50	82
2	Cindy Gustia Sari	52	78
3	Dandi Darmawan	72	86
4	Dimas Satrio	26	64
5	Dita Alya	40	46
6	Engkos Kosasi Hrp	54	88
7	Evira Syafitri	52	84
8	Fiya Rahim	38	72
9	Helmi Maulana	36	56
10	Intan Nesa Pratiwi	50	72
11	M. Hafizh Nasution	56	70
12	Mazka Niswiya	58	76
13	Muhammad Zuhairi Syahputra	50	60
14	Mulyadi Putro	46	50
15	Nadila Wulandari	52	78
16	Naila Syahira	68	74
17	Naila Syifa	26	44
18	Naysa Amanda	44	76
19	Nazwa Salsabila	62	78
20	Neiza Fahira Syhadikop	64	82
21	Nur Zahara	76	90
22	Nurul Fadia	66	84
23	Nurul Khotimah	52	68
24	Ovita Sawa	54	84
25	Rendy Wahyudi	29	44
26	Risda Afifa	70	86
27	Rudyant Gunawan	38	52
28	Satria Wananda	42	74
29	Vivi Anggita	70	86
30	Yudo	54	76
31	Yusfi Anisa Lubis	64	88
32	Yuwita Ade Syahputri	72	90
33	Zahratul Hasanah	70	88

Lampiran 11
Perhitungan Rata-rata dan Simpangan Baku Pre test dan Pos test Kelas
Eksperimen 1

1. Menentukan Rata-rata dan Simpangan Baku Pre Tes Kelas Eksperimen 1

No	X_1	X_1^2
1	24	576
2	24	576
3	26	676
4	28	784
5	32	1024
6	34	1156
7	36	1296
8	36	1296
9	38	1444
10	38	1444
11	40	1600
12	40	1600
13	42	1764
14	46	2116
15	46	2116
16	46	2116
17	48	2304
18	50	2500
19	52	2704
20	52	2704
21	54	2916
22	54	2916
23	54	2916
24	56	3136
25	60	3600
26	60	3600
27	62	3844
28	62	3844
29	66	4356
30	68	4624
31	68	4624

32	70	4900
33	70	4900
$\sum X$	1582	81972
rata-rata	47,93939	
Varian	191,6212	
simpangan		
baku	13,84273	

2. Menentukan Rata-rata dan Simpangan BakuPos Tes Kelas Eksperimen 1

No	X_2	X_2^2
1	46	2116
2	50	2500
3	50	2500
4	62	3844
5	64	4096
6	66	4356
7	68	4624
8	68	4624
9	68	4624
10	70	4900
11	70	4900
12	70	4900
13	72	5184
14	72	5184
15	72	5184
16	72	5184
17	72	5184
18	74	5476
19	74	5476
20	74	5476
21	74	5476
22	80	6400
23	80	6400
24	80	6400
25	80	6400
26	82	6724
27	86	7396

28	86	7396
29	88	7744
30	90	8100
31	90	8100
32	90	8100
33	92	8464
$\sum X$	2432	183432
rata-rata	73,6969697	
Varian	131,280303	
simpangan		
baku	11,45776169	

Lampiran 12
Perhitungan Rata-rata dan Simpangan Baku Pre test dan Pos test Kelas
Eksperimen 2

1. Menentukan Rata-rata dan Simpangan Baku Pre Tes Kelas Eksperimen 2

2
6
6
1
6
4
4
00
54
86
6
00
00
00
)4
)4
)4
)4
6
6
6
86
54
4
6
6
66
24
00
00
00
34

32	72	5184
33	76	5776
$\sum X$	1753	99217
rata-rata	53,12121	
varian	190,4848	
simpangan baku	13,80162	

2. Menentukan Rata-rata dan Simpangan BakuPos Tes Kelas Eksperimen 2

No	X_2	X_2^2
1	44	1936
2	44	1936
3	46	2116
4	50	2500
5	52	2704
6	56	3136
7	60	3600
8	64	4096
9	68	4624
10	70	4900
11	72	5184
12	72	5184
13	74	5476
14	74	5476
15	76	5776
16	76	5776
17	76	5776
18	78	6084
19	78	6084
20	78	6084
21	82	6724
22	82	6724
23	84	7056
24	84	7056
25	84	7056
26	86	7396

27	86	7396
28	86	7396
29	88	7744
30	88	7744
31	88	7744
32	90	8100
33	90	8100
$\sum X$	2426	184684
rata-rata	73,5151515	
Varian simpangan	198,007576	
baku	14,0715165	

Perhitungan Distribusi Frekuensi Pre test dan Pos test Kelas Eksperimen 1

1. Menentukan Distribusi Frekuensi Pre Tes Kelas Eksperimen 1

a. Menentukan Rentang

$$J = X_{max} - X_{min}$$

$$J = 70 - 24$$

$$J = 46$$

b. Menentukan Banyak Kelas

$$K = 1 + 3,3 \log n$$

$$K = 1 + 3.3 \log 33$$

$$K = 6.01$$

$$K = 6$$

Maka banyak kelas yang diambil 6

c. Menentukan panjang kelas

$$p = \frac{rentang}{banyak \, kelas}$$

$$p = \frac{46}{6} = 7,67$$

Maka panjang kelas yang diambil adalah 8

Sehingga distribusi frekuensinya adalah:

Kelas	Rentang Frekuensi (f)		Frekuensi Komulatif (F)	
1	24 – 32	5	5	
2	33 – 41	7	12	
3	42 – 50	5	17	
4	51 – 59	7	24	

5	60 – 68	4	28
6	69 – 77	5	33
	Jumlah	33	33

d. Median

Median =
$$Bb + p \frac{(\frac{1}{2}n - F)}{f}$$

= $42 + 8 \frac{(\frac{1}{2}.33 - 17)}{5}$
= $42 + (-0.8) = 41.2$

Jadi median dari data di atas adalah 41,2

e. Modus

$$Mo = Bb + p\left(\frac{f_1}{f_1 + f_2}\right)$$
 $Mo = 51 + 7\left(\frac{2}{2 + 2}\right)$
 $Mo = 51 + 7(0,5)$
 $Mo = 51 + 3,5$
 $Mo = 54,5$

2. Menentukan Distribusi Frekuensi Pos Tes Kelas Eksperimen 1

a. Menentukan Rentang

$$J = X_{max} - X_{min}$$

$$J = 92 - 46$$

$$J = 46$$

b. Menentukan Banyak Kelas

$$K = 1 + 3.3 \log n$$

$$K = 1 + 3.3 \log 33$$

$$K = 6,01$$

$$K = 6$$

Maka banyak kelas yang diambil 6

c. Menentukan panjang kelas

$$p = \frac{J}{K}$$

$$p = \frac{46}{6} = 7,7$$

Maka panjang kelas yang diambil adalah 8

Sehingga distribusi frekuensinya adalah:

	Rentang	Frekuensi (f)	Frekuensi Komulatif (F)
1	46 – 54	3	3
2	55 – 63	1	4
3	64 - 72	13	17
4	73 – 81	8	25
5	82 - 90	7	32
6	91 – 99	1	33
	Jumlah	33	33

d. Median

Median =
$$Bb + p \frac{(\frac{1}{2}n - F)}{f}$$

= $64 + 8 \frac{(\frac{1}{2}.33 - 17)}{13}$
= $64 + (-0.31) = 63.7$

Jadi median dari data di atas adalah 63,7

e. Modus

$$Mo = Bb + p\left(\frac{f_1}{f_1 + f_2}\right)$$

$$Mo = 64 + 8 \left(\frac{12}{12 + 8}\right)$$

$$Mo = 64 + 8(0,6)$$

$$Mo = 64 + 4.8$$

$$Mo = 68.8$$

Perhitungan Distribusi Frekuensi Pre test dan Pos test Kelas Ekperiment 2

2. Menentukan Distribusi Frekuensi Pre Tes Kelas Ekperiment 2

a. Menentukan Rentang

$$J = X_{max} - X_{min}$$

$$J = 76 - 26$$

$$J = 50$$

b. Menentukan Banyak Kelas

$$K = 1 + 3.3 \log n$$

$$K = 1 + 3.3 \log 33$$

$$K = 6.01$$

$$K = 6$$

Maka banyak kelas yang diambil 6

c. Menentukan panjang kelas

$$p = \frac{J}{K}$$

$$p = \frac{50}{6} = 8,34$$

Maka panjang kelas yang diambil adalah 8

Sehingga distribusi frekuensinya adalah:

Kelas	Rentang	Frekuensi (f)	Frekuensi Komulatif (F)
1	26 – 34	3	3
2	35 – 43	5	8
3	44 – 52	9	17
4	53 – 61	5	22
5	62 - 70	8	30
6	71 – 79	3	33
	Jumlah	33	33

d. Median

$$Median = Bb + p \frac{(\frac{1}{2}n - F)}{f}$$
$$= 44 + 8 \frac{(\frac{1}{2}.33 - 17)}{9}$$

$$= 44 + (-0.45) = 43.5$$

Jadi median dari data di atas adalah 43,5

e. Modus

$$Mo = Bb + p\left(\frac{f_1}{f_1 + f_2}\right)$$

$$Mo = 44 + 8\left(\frac{4}{4+4}\right)$$

$$Mo = 44 + 8(0,5)$$

$$Mo = 44 + 4$$

$$Mo = 48$$

3. Menentukan Distribusi Frekuensi Pos Tes Kelas Eksperimen 2

a. Menentukan Rentang

$$J = X_{max} - X_{min}$$

$$J = 90 - 44$$

$$J = 46$$

b. Menentukan Banyak Kelas

$$K = 1 + 3,3 \log n$$

$$K = 1 + 3.3 \log 33$$

$$K = 6.01$$

$$K = 6$$

Maka banyak kelas yang diambil 6

c. Menentukan panjang kelas

$$p = \frac{J}{K}$$

$$n = \frac{46}{5} = 7$$

$$p = \frac{46}{6} = 7,7$$

Maka panjang kelas yang diambil adalah 8

Sehingga distribusi frekuensinya adalah:

Kelas	Rentang	Frekuensi (f)	Frekuensi Komulatif (F)
1	44 – 52	5	5
2	53 – 61	2	7
3	62 - 70	3	10
4	71 – 79	10	20
5	80 - 88	11	31
6	89 – 96	2	33
	Jumlah	33	33

d. Median

$$Median = Bb + p \frac{(\frac{1}{2}n - F)}{f}$$

$$=71+8\ \frac{(\frac{1}{2}.33-20)}{10}$$

$$= 71 + (-2.8) = 68.2$$

Jadi median dari data di atas adalah 68,2

e. Modus

$$Mo = Bb + p\left(\frac{f_1}{f_1 + f_2}\right)$$

$$Mo = 80 + 8\left(\frac{1}{1+9}\right)$$

$$Mo = 80 + 8(0,1)$$

$$Mo = 80 + 0.8$$

$$Mo = 80.8$$

Lampiran 15

Tabel Perhitungan Uji Normalitas (Pre Tes) kelas Eksperimen 1

		_			- (-I)	~ (T1)	F(Zi) -
No	X	F	F Kum	Zi	F(Zi)	S(Zi)	S(Zi)
1	24	2	2	-1,729	0,042	0,061	0,019
2	26	1	3	-1,585	0,057	0,091	0,034
3	28	1	4	-1,44	0,074	0,121	0,047
4	32	1	5	-1,151	0,125	0,152	0,027
5	34	1	6	-1,007	0,158	0,182	0,024
6	36	2	8	-0,863	0,194	0,242	0,048
7	38	2	10	-0,718	0,238	0,303	0,065
8	40	2	12	-0,574	0,291	0,364	0,073
9	42	1	13	-0,429	0,337	0,394	0,057
10	46	3	16	-0,14	0,444	0,485	0,041
11	48	1	17	0,004	0,500	0,515	0,015
12	50	1	18	0,149	0,556	0,545	0,011
13	52	2	20	0,293	0,614	0,606	0,008
14	54	3	23	0,438	0,667	0,697	0,030
15	56	1	24	0,582	0,719	0,727	0,008
16	60	2	26	0,871	0,807	0,788	0,019
17	62	2	28	1,016	0,843	0,848	0,005
18	66	1	29	1,305	0,903	0,879	0,024
19	68	2	31	1,449	0,925	0,939	0,014
20	70	2	33	1,594	0,944	1,000	0,056
Mean	47,939	33			L-Hitung	0,073	
Simpangan	13,843						
Baku					L-Tabel	0,154	

Lampiran 16

Tabel Perhitungan Uji Normalitas (Post Tes) kelas Eksperimen 1

			1	1	ı		
N.T.	37	Б	E IZ	77.	E(7')	0(77)	F(Zi) -
No	X	F	F Kum	Zi	F(Zi)	S(Zi)	S(Zi)
1	46	1	1	-2,417	0,008	0,030	0,022
2	50	2	3	-2,068	0,019	0,091	0,072
3	62	1	4	-1,021	0,153	0,121	0,032
4	64	1	5	-0,846	0,200	0,152	0,048
5	66	1	6	-0,672	0,251	0,182	0,069
6	68	3	9	-0,497	0,312	0,273	0,039
7	70	3	12	-0,323	0,374	0,364	0,010
8	72	5	17	-0,148	0,444	0,515	0,071
9	74	4	21	0,026	0,508	0,636	0,128
10	80	4	25	0,550	0,708	0,758	0,050
11	82	1	26	0,725	0,764	0,788	0,024
12	86	2	28	1,074	0,857	0,848	0,009
13	88	1	29	1,248	0,892	0,879	0,013
14	90	3	32	1,423	0,922	0,970	0,048
15	92	1	33	1,597	0,944	1,000	0,056
Mean	73,697	33		L-tabel			0,128
Simpangan				L-			
Baku	11,458			hitung			0,154

Lampiran 17

Tabel Perhitungan Uji Normalitas (Pre Tes) kelas Eksperimen 2

	1		1	ı	ı		
No	X	F	F Kum	Zi	F(Zi)	S(Zi)	F(Zi) - S(Zi)
1	26	2	2	-1,965	0,025	0,061	0,036
2	29	1	3		0,023	0,001	
			4	-1,748	- í	,	0,051
3	36	1		-1,241	0,107	0,121	0,014
4	38	2	6	-1,096	0,137	0,182	0,045
5	40	1	7	-0,951	0,171	0,212	0,041
6	42	1	8	-0,806	0,211	0,242	0,031
7	44	1	9	-0,661	0,254	0,273	0,019
8	46	1	10	-0,516	0,305	0,303	0,002
9	50	3	13	-0,226	0,412	0,394	0,018
10	52	4	17	-0,081	0,468	0,515	0,047
11	54	3	20	0,064	0,523	0,606	0,083
12	56	1	21	0,209	0,580	0,636	0,056
13	58	1	22	0,353	0,636	0,667	0,031
14	62	1	23	0,643	0,739	0,697	0,042
15	64	2	25	0,788	0,782	0,758	0,024
16	66	1	26	0,933	0,823	0,788	0,035
17	68	1	27	1,078	0,857	0,818	0,039
18	70	3	30	1,223	0,890	0,909	0,019
19	72	2	32	1,368	0,913	0,970	0,057
20	76	1	33	1,658	0,950	1,000	0,050
Mean	54,458	33		L-tabel			0,083
Simpangan Baku	14,307			L- hitung			0,154

Lampiran 18

Tabel Perhitungan Uji Normalitas (Post Tes) kelas Eksperimen 2

	1		ı	1		1	
		_			- /	a (=1)	F(Zi) -
No	X	F	F Kum	Zi	F(Zi)	S(Zi)	S(Zi)
1	44	2	2	-2,098	0,018	0,061	0,043
2	46	1	3	-1,955	0,025	0,091	0,066
3	50	1	4	-1,671	0,047	0,121	0,074
4	52	1	5	-1,529	0,064	0,152	0,088
5	56	1	6	-1,245	0,107	0,182	0,075
6	60	1	7	-0,960	0,168	0,212	0,044
7	64	1	8	-0,676	0,251	0,242	0,009
8	68	1	9	-0,392	0,348	0,273	0,075
9	70	1	10	-0,250	0,401	0,303	0,098
10	72	2	12	-0,108	0,460	0,364	0,096
11	74	2	14	0,034	0,512	0,424	0,088
12	76	3	17	0,177	0,567	0,515	0,052
13	78	3	20	0,319	0,621	0,606	0,015
14	82	2	22	0,603	0,725	0,667	0,058
15	84	3	25	0,745	0,770	0,758	0,012
16	86	3	28	0,887	0,810	0,848	0,038
17	88	3	31	1,029	0,847	0,939	0,092
18	90	2	33	1,172	0,880	1,000	0,120
Mean	73,515	33		L-tabel			0,120
Simpanga				L-			
n Baku	14,072			hitung			0,154

PERHITUNGAN UJI HOMOGENITAS DATA TES KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA (PRE TEST)

Sampel	db = (n - 1)	1/db	Si ²	log Si ²	db.Si ²	db.logSi ²
X_1	32	0,031	1328,19	3,123	42502,016	99,9443
X_2	32	0,031	1431,22	3,156	45798,976	100,983
Jumlah	64	0,063	2759,41	6,279	88300,992	200,927

Adapun langkah – langkah Uji Bartlet, yaitu:

1. Menghitung varians gabungan sebagai berikut :

$$\begin{split} s^2 &= \left(\frac{\sum (n_i - 1)S_i^2}{\sum (n_i - 1)}\right) \\ &= \left(\frac{\left((n_1 - 1)S_1^2\right) + \left((n_2 - 1)S_2^2\right)}{(n_1 - 1) + (n_2 - 1)}\right) \\ &= \left(\frac{(32 \times 1328, 19) + (32 \times 1431, 22)}{64}\right) \\ &= 1379,705 \end{split}$$

2. Menghitung log s²

$$\log s^2 = \log 1379,705$$
$$= 3,140$$

3. Menghitung nilai B yaitu:

$$B = (\log s^2) \times \sum (n_i - 1)$$
$$= 3,140 \times 64 = 200,946$$

4. Menghitung nilai x_{hitung}^2 dengan rumus :

$$x_{hitung}^{2} = (\ln 10) \left\{ B - \sum (db \times \log S_{i}^{2}) \right\}$$

$$= \ln 10 (200,946 - 200,927)$$

$$= 2,3 (0,019)$$

$$= 0,043$$

5. Mencari nilai x_{tabel}^2 yaitu :

Table yang digunakan untuk mencari nilai x_{tabel}^2 adalah table X^2 dengan dk=k-1=2-1=1. Nilai x_{tabel}^2 nya adalah 3,841 dan ternyata nilai $x_{hitung}^2 < x_{tabel}^2$ atau 0,043 < 3,841

Dari data diatas diperoleh nilai $x_{hitung}^2 < x_{tabel}^2$ yaitu 0,043 < 3,841, maka dapat disimpulkan data pretes kedua kelas tersebut adalah homogen.

PERHITUNGAN UJI HOMOGENITAS DATA TES KEMAMPUAN PEMECAHAN MASALAH MATEMATIKA SISWA (POST TEST)

Sampel	db = (n - 1)	1/db	Si ²	log Si ²	db.Si ²	db.logSi ²
X_1	32	0,031	1632,42	3,213	52237,312	102,811
X_2	32	0,031	1910,39	3,281	61132,384	104,996
Jumlah	64	0,063	3542,8	6,494	113369,696	207,806

Adapun langkah – langkah Uji Bartlet, yaitu :

1. Menghitung varians gabungan sebagai berikut :

$$\begin{split} s^2 &= \left(\frac{\sum (n_i - 1)S_i^2}{\sum (n_i - 1)}\right) \\ &= \left(\frac{\left((n_1 - 1)S_1^2\right) + \left((n_2 - 1)S_2^2\right)}{(n_1 - 1) + (n_2 - 1)}\right) \\ &= \left(\frac{(32 \times 1632, 42) + (32 \times 1910, 39)}{64}\right) \\ &= 1771, 405 \end{split}$$

2. Menghitung log s²

$$\log s^2 = \log 1771,405$$
$$= 3.248$$

3. Menghitung nilai B yaitu:

$$B = (\log s^2) \times \sum (n_i - 1)$$
$$= 3,248 \times 64 = 207,892$$

4. Menghitung nilai x_{hitung}^2 dengan rumus :

$$x_{hitung}^2 = (\ln 10) \left\{ B - \sum (db \times \log S_i^2) \right\}$$

- $= \ln 10 (207,892 207,806)$
- = 2,3 (0,086)
- = 0,1985

5. Mencari nilai x_{tabel}^2 yaitu :

Table yang digunakan untuk mencari nilai x_{tabel}^2 adalah table X^2 dengan dk=k-1=2-1=1. Nilai x_{tabel}^2 nya adalah 3,841 dan ternyata nilai $x_{hitung}^2 < x_{tabel}^2$ atau 0,1985 < 3,841

Dari data diatas diperoleh nilai $x_{hitung}^2 < x_{tabel}^2$ yaitu 0,1985 < 3,841, maka dapat disimpulkan data pretes kedua kelas tersebut adalah homogen.

Lampiran 21 Uji Hipotesis Data Kemampuan Pemecahan Masalah Matematika Siswa

	Kemampuan Pemecahan Masalah Matematika Siswa (N-Gain)					
No. Responden	Problem Based Learning	Team assisted individualization				
1	0,071895425	0,059				
2	0,08	0,059				
3	0,007	0,056				
4	0,11	0,047				
5	0,107	0,047				
6	0,108	0,061				
7	0,108	0,068				
8	0,108	0,076				
9	0,102	0,083				
10	0,109	0,084				
11	0,103	0,078				
12	0,103	0,078				
13	0,104	0,085				
14	0,09	0,079				
15	0,09	0,086				
16	0,091	0,086				
17	0,085	0,086				
18	0,085	0,086				
19	0,079	0,086				
20	0,079	0,086				
21	0,072	0,094				
22	0,094	0,088				
23	0,094	0,082				
24	0,087	0,075				
25	0,074	0,075				
26	0,081	0,075				
27	0,089	0,068				
28	0,089	0,061				
29	0,083	0,069				
30	0,083	0,069				

31	0,083	0,062
32	0,076	0,069
33	0,084	0,055
Rata-rata	0,088148346	0,073778591
Simpangan Baku	0,018774676	0,012617628
Varians	0,000352488	0,000159205

Dari data tersebut dapat dihitung rata rata hasil belajar siswa yang dilakukan dengan menggunakan metode PBL $\overline{X_1}=0.088$ simpangan baku $S_1=0.018$ dan varians $S_1^2=0.0003$. Rata – rata hasil belajar siswa yang dilakukan dengan menggunakan metode TAI $\overline{X_2}=0.073$ simpangan baku $S_2=0.012$ dan varians $S_2^2=0.0001$. Dengan menggunakan rumus korelasi product momen ditemukan r=0.329

$$t = \frac{\overline{X_1} - \overline{X_2}}{S\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$S^{2} = \frac{\sqrt{(n_{1} - 1)S_{1}^{2} + (n_{2} - 1)S_{2}^{2}}}{n_{1} + n_{2} - 2}$$

$$S^2 = \frac{\sqrt{(33-1)0,0003 + (33-1)0,0001}}{33+33-2}$$

$$S^2 = \frac{\sqrt{0,0096 + 0,0032}}{64}$$

$$S^2 = 0.0015$$

Sehingga;

$$t = \frac{\overline{X_1} - \overline{X_2}}{S^2 \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

$$t = \frac{0,088 - 0,073}{0,0015\sqrt{\frac{1}{33} + \frac{1}{33}}}$$

$$t = \frac{0,015}{0,030}$$

$$t = 0.5$$

Dari data diatas diperoleh t_{hitung} = 0,5 kemudian dibandingkan dengan nilai table yang diambil dari table distribusi t dengan dk = $n_1 + n_2 - 2 = 33 + 33 - 2 = 64$. Dengan dk = 64 , maka t_{tabel} = 1,997 dengan taraf kesalahan sebesar 5%. Kriteria pengambilan keputusan adalah :

 H_o ditolak jika $t_{hitung} > t_{tabel}$ atau $-t_{hitung} < -t_{tabel}$

 H_o diterimajika $t_{hitung} < t_{tabel}$ atau- $t_{hitung} > -t_{tabel}$

Karena didapat 0.5 < 1.997 atau $t_{\rm hitung} < t_{\rm tabel}$ maka $H_{\rm o}$ diterima dan $H_{\rm a}$ ditolak. Hal ini menunjukkan bahwa tidak terdapat perbedaan hasil kemampuan pemecahan masalah matematika siswa yang diajar dengan menggunakan model pembelajaran problem based learning (PBL) dan tipe *team assited individualization (TAI)*.

Foto Kegiatan Selama Penelitian

Kelas VII B eksperimen II

Kelas eksperimen dua ketika kerja kelompok

Kelas eksperimen I ketika kerja kelompok

Siswa bertanya kepada guru