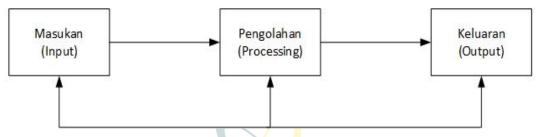
BAB II

TINJAUAN PUSTAKA

2.1. Sistem

Secara etimologi, sistem berasal dari bahasa latin yaitu *systema* atau dalam bahasa yunani disebut *sustema* yang berarti suatu kesatuan yang terdiri dari komponen atau elemen yang dihubungkan bersama untuk memudahkan aliran informasi, materi atau energi untuk mencapai tujuan (Monalisa & Yusran, 2022). Berdasarkan Kamus besar Bahasa Indonesia (KBBI), Sistem didefinisikan sebagai perangkat unsur yang terkait menggunakan pembentukan negara totaliter. dari definisi tersebut dapat diketahui bahwa sistem merupakan suatu jaringan asal banyak sekali sistem yg saling berhubungan yg bekerja sama buat mencapai suatu tujuan tertentu.

Definisi sistem berkembang sesuai dengan konteks dimana pengertian sistem itu digunakan. Berikut beberapa defenisi sistem secara umum:


1. Sistem adalah kumpulan dari bagia-bagian yang bekerja bersama-sama untuk mencapai tujuan yang sama.

Contoh:

- a. Sistem Tata Surya
- b. Sistem Pencernaan
- c. Sistem Transportasi
- d. Sistem Otomotif VERSITAS ISLAM NEGERI
- e. Sistem Komputer
- f. Sistem Informasi
- 2. Sistem adalah sekumpulan dari objek-objek yang saling berelasi dan berinteraksi dan hubungan antar objek bisa dilihat sebgai satu kesatuan yang dirancang untuk mencapai satu tujuan (Zufria, 2018).

Dengan demikian secara sederhana sistem dapat diartikan sebagai suatu kumpulan atau himpunan dari unsur atau variable-variable yang saling terorganisasi dan saling bergantung sama lain. Sistem terdiri dari unsurunsur seperti

masukan(*Input*), pengolahan (processing), serta keluaran (*Output*). Ciri pokok sistem ada empat, yaitu sistem itu beroperasi dalam suatu lingkungan terdiri atas unsur-unsur, ditandai dengan saling berhubungan dan mempunyai satu fungsi atau tujuan utama.

Gambar 2. 1 Model Sistem

Sumber: (Zufria, 2018)

Gambar diatas menjelaskan bahwa sistem atau pendekatan sistem minimal harus mempunyai empat komponen, yakni masukan, pengolahan, keluaran dan balikan atau *control*.

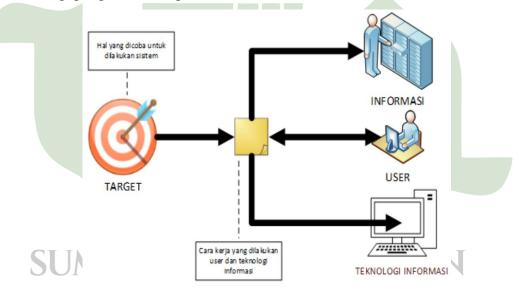
Sistem memiliki beberapa karakteristik, berikut ini merupakan karakteristik sistem yang dapat membedakan suatu sistem dengan sistem lainnya (Zufria, 2018):

- 1. Batasan (*Boundary*): Pengambaran dari suatu elemen atau unsur mana yang termasuk didalam sistem dan mana yang diluar sistem.
- 2. Lingkungan Luar (*Environment*): Semua faktor di luar sistem yang menyediakan asumsi, kendala, dan masukan terhadap sistem.
- 3. Masukan (*Input*): Sumber daya yang berasal dari lingkungan sistem, seperti data, bahan baku, peralatan, dan energi, yang dimanipulasi oleh sistem. UNIVERSITAS ISLAM NEGERI
- 4. Keluaran (*Output*): Sumber daya atau produk (informasi, laporan, dokumen, tampilan layer computer, barang jadi) yang disediakan untuk lingkungan sistem oleh kegiatan dalam suatu sistem.
- 5. Pengolah (*Process*): Kegiatan atau aktivitas dalam sistem yang mengubah *Input* menjadi *Output*. Komponen ini dapat berupa subsistem dari suatu sistem.
- 6. Penghubung (*Interface*): Tempat dimana komponen atau sistem dan lingkungannya bertemu atau berinteraksi.

7. Penyimpanan (*Storage*): suatu media penyangga diantara komponen tersebut bekerja dengan berbagai tingkatan yang ada dan memungkinkan komponen yang berbeda dari berbagai data yang sama.

2.2. Informasi

Menurut KBBI Informasi adalah pemberitahuan kabar atau berita tentang sesuatu. Informasi adalah data yang diolah menjadi lebih berguna dan berarti penerimanya, serta untuk mengurangi ketidakpastian dalam proses pengambilan keputusan mengenai suatu keadaan (Tukino, 2020). Informasi merupakan suatu data yang telah diolah, diklasifikasikan dan diinterprestasikan serta digunakan untuk proses pengambilan keputusan (Syifa & Purwanto, 2022). Informasi dapat dikelompokkan menjadi tiga bagian, yaitu:


- a. Informasi Strategis Informasi ini digunakan untuk mengambil keputusan jangka panjang, yang mencakup informasi eksternal, rencana perluasan perencanaan, dan sebagainya.
- b. Informasi Taktis. Informasi ini dibutuhkan untuk mengambil keputusan jangka menengah, seperti informasi tren penjualan yang dapat dimanfaatkan untuk menyusun rencana penjualan.
- c. Informasi Teknis Informasi ini dibutuhkan untuk keperluan operasional sehari-hari, seperti informasi persediaan stock, retur penjualan, dan laporan kas harian.

2.3. Sistem Informasi

Sistem informasi adalah suatu sistem di dalam suatu organisasi yang dipertemukan kebutuhan pengolahan transaksi harian, mendukung operasi, bersifat manajerial dan kegiatan strategi dari suatu organisasi dan menyediakan pihak luar tertentu dengan laporan – laporan yang diperlukan (Zufria, 2018). Menurut Sistem informasi merupakan cara yang diatur untuk mengumpulkan, memasukan dan mengolah serta menyimpan data dan cara diatur untuk melaporkan, mengendalikan, mengelola bahkan menyimpan informasi sehingga organisasi dapat mencapai tujuan.

Secara teknis Sistem Informasi merupakan serangkaian komponen yang saling berhubungan yang mengumpulkan, menyimpan, memproses dan mendistribusikan informasi untuk mendukung pengambilan keputusan dan pengawasan di sebuah organisasi. Sistem informasi juga membantu manajer dan karyawan dalam menganalisis masalah, menggambarkan hal-hal yang rumit, juga menciptakan produk atau inovasi baru. Sistem informasi berisi infomasi – informasi penting berupa: orang, tempat/lokasi dan hal – hal yang penting lainnya yang berkaitan dengan organisasi dan lingkungan luar organisasi tersebut (Jonni & Husein, 2019).

Dari pengertian tersebut maka secara garis besar sistem informasi merupakan serangkaian unsur - unsur atau komponen – komponen yang saling berhubungan dan memiliki tugas yaitu mengumpulkan, menyimpan, memproses dan mendistribusikan suatu informasi yang nantinya dapat digunakan sebagai bahan landasan bagi pengambilan keputusan.

Gambar 2. 2 Skema Definisi Sistem Informasi

Sumber : (Sudipa & Lestari, 2019)

2.3.1. Komponen Sistem Informasi

Sistem informasi terdiri dari komponen-komponen yang disebut blok bangunan (*building block*), yang terdiri dari komponen *Input*, komponen model, komponen *Output*, komponen teknologi, komponen *hardware*, komponen *software*,

komponen basis data, dan komponen kontrol. Semua komponen tersebut saling berinteraksi satu dengan yang lain. Adapun pengertian dari masing – masing komponen sistem informasi adalah sebagai berikut :

1. Komponen *Input*

Input mewakili data yang masuk kedalam sistem informasi. *Input* disini termasuk metode dan media untuk menangkap data yang akan dimasukkan, yang dapat berupa dokumen-dokumen dasar.

2. Komponen Model

Komponen ini terdiri dari kombinasi prosedur, logika, dan model matematik yang akan memanipulasi data *Input* dan data yang tersimpan di basis data dengan cara yag sudah ditentukan untuk menghasilkan keluaran yang diinginkan.

3. Komponen Output

Hasil dari sistem informasi adalah keluaran yang merupakan informasi yang berkualitas dan dokumentasi yang berguna untuk semua pemakai sistem.

4. Komponen Teknologi

Teknologi merupakan tool box dalam sistem informasi, teknologi digunakan untuk menerima *Input*, menjalankan model, menyimpan dan mengakses data, menghasilkan dan mengirimkan keluaran, dan membantu pengendalian dari sistem secara keseluruhan.

5. Komponen Hardware

Hardware berperan penting sebagai suatu media penyimpanan vital bagi sistem informasi, yang berfungsi sebagai tempat untuk menampung data base atau lebih mudah dikatakan sebagai sumber data dan informasi untuk memperlancar dan mempermudah kerja dari sistem informasi.

6. Komponen *Software*

Software berfungsi sebagai tempat untuk mengolah,menghitung dan memanipulasi data yang diambil dari hardware untuk menciptakan suatu informasi.

7. Komponen Basis Data

Basis data (*database*) merupakan kumpulan data yang saling berkaitan dan berhubungan satu dengan yang lain, tersimpan di perangkat keras komputer dan menggunakan perangkat lunak untuk memanipulasinya

8. Komponen Control

Banyak hal yang dapat merusak sistem informasi, seperti bencana alam, api, temperatur, air, debu, kecurangan – kecurangan, kegagalan – kegagalan sistem itu sendiri, ketidakefisienan, sabotase dan lain sebagainya. Beberapa pengendalian perlu dirancang dan diterapkan untuk meyakinkan bahwa halhal yang dapat merusak sistem dapat dicegah ataupun bila terlanjur terjadi kesalahan-kesalahan dapat langsung cepat diatasi.

2.3.2. Tujuan Sistem Informasi

Tujuan dari sistem informasi adalah untuk mengumpulkan, menyimpan, mengelola, menganalisis, dan menyediakan informasi yang relevan dan akurat kepada pengguna dalam organisasi atau lingkungan tertentu. Sistem informasi dibuat untuk membantu dalam pengambilan keputusan, meningkatkan efisiensi, dan memfasilitasi proses bisnis (Aswiputri, 2022). Selain itu terdapat juga tujuan – tujuan utama sistem informasi yaitu sebagai berikut :

1. Mendukung Pengambilan Keputusan

Sistem informasi dirancang untuk menyediakan informasi yang relevan, akurat, dan tepat waktu kepada para pengambil keputusan di dalam organisasi. Informasi ini membantu manajemen dan pemangku kepentingan lainnya dalam membuat keputusan yang baik dan berdasarkan data, baik untuk perencanaan jangka panjang maupun tindakan operasional seharihari.

2. Meningkatkan Efisiensi Operasional

Sistem informasi mampu meningkatkan efisiensi dalam menjalankan proses bisnis. Dengan mengotomatisasi tugas-tugas rutin, mengurangi pekerjaan manual, dan mengoptimalkan aliran informasi, sistem informasi dapat menghemat waktu dan biaya serta meningkatkan produktivitas keseluruhan organisasi.

3. Meningkatkan Layanan dan Kepuasan Pelanggan

Sistem informasi membantu organisasi dalam memahami kebutuhan dan preferensi pelanggan. Dengan informasi yang akurat dan terkini, organisasi dapat memberikan pelayanan yang lebih baik dan lebih responsif terhadap permintaan pelanggan, yang pada gilirannya dapat meningkatkan kepuasan pelanggan dan membangun loyalitas pelanggan yang lebih baik.

2.4. Analisis dan Perancangan Sistem

Analisis dan perancangan sistem merupakan dua tahapan utama dalam pengembangan teknologi informasi. Tahap analisis melibatkan pengumpulan data, identifikasi kebutuhan, serta evaluasi masalah yang perlu diselesaikan. Tahap perancangan sistem fokus pada desain teknis sistem, seperti struktur, basis data, alur kerja, dan antarmuka pengguna.

2.4.1. Analisis

Analisis sistem didefenisikan sebagai bagaimana memahami dan menspesifikasi dengan detail apa yang harus dilakukan oleh sistem. Menurut Jogiyanto (2005:129) Analisis Sistem yaitu Penguraian dari suatu sistem informasi yang utuh kedalam bagian-bagian komponennya dengan maksud untuk mengidentifikasi dan mengevaluasi permasalahan-permasalahan, kesempatan kesempatan, hambatan-hambatan yang terjadi dan kebutuhan-kebutuhan yang diharapkan sehingga dapat diusulkan perbaikan-perbaikannya. Menurut George M. Scott Analisis sistem (sistem analisis) adalah kegiatan yang berorientasi pada manusia dan bersifat tidak terstuktur ,yang melibatkan perkiraan (*estimates*) dan negoisasi.

Ada 2 tujuan pada analisis sistem, yaitu:

- 1. Menentukann kelemahan dari proses-proses bisnis pada sistem lama untuk bisa menentukan kebutuhan dari sistem baru.
- 2. Menentukan tingkat kelayakan kebutuhan sistem baru tersebut ditinjau dari beberapa aspek, diantaranya ekonomi, teknik, operasional, dan hukum.

Di dalam tahap analisis sistem juga terdapat langkah-langkah dasar yang harus dilakukan oleh analisis sistem sebagai berikut:

- 1. Identify, yaitu mengidentifikasi masalah yang meliputi :
 - a. Mengidentifikasi Penyebab Masalah
 - b. Mengidentifikasi Titik Keputusan
 - c. Mengidentifikasi Personil-Personil Kunci
- 2. *Understand*, yaitu memahami kerja dari sistem yang ada. Memahami kerja dari sistem yang ada meliputi :
 - a. Menentukan Jenis Penelitian
 - b. Merencanakan Jadual Penelitan
 - c. Membuat Penugasan Penelitian
 - d. Membuat Agenda Wawancara
 - e. Mengumpulkan Hasil Penelitian
- 3. Analyze, yaitu menganalisis sistem, meliputi :
 - a. Menganalisis kelemahan sistem
 - b. Menganalisis kebutuhan informasi pemakai
- 4. *Report*, yaitu membuat laporan hasil analisis. Membuat laporan hasil analisis. Tujuanya adalah :
 - a. Tujuan Pelaporan bahwa analisis telah selesai dilakukan
 - b. Meluruskan kesalhan pengertian mengenai apa yang telah ditemukan dan dianalisis oleh analis *system* tetapi tidak sesuai menurut manajemen.
 - c. Meminta pendapat-pendapat dan saran-saran dari pihak manajemen.
 - d. Meminta persetujuan kepada pihak manajemen untuk melakukan tindakan selanjutnya, dapat berupa meneruskan ke tahap desain *system* atau menghentikan proyek bila dipandang tidak layak lagi.

2.4.2. Definisi Perancangan Sistem

Perancangan sistem adalah proses perancangan untuk merancang sistem atau memperbaiki sistem yang telah ada sehingga sistem menjadi lebih baik serta dapat mengerjakan pekerjaan secara efektif dan efisien, proses rancangan bisa berupa rancangan *Input*, rancangan *Output*, rancangan file. Definisi perancangan sistem menurut George M. Scott dalam buku prinsip-prinsip *system* informasi manajemen,

perancangan sistem adalah menentukan bagaimana mencapai sasaran yang ditetapkan yang melibatkan pembentukan (*configuring*) perangkat lunak dan komponen perangkat keras sistem dimana setelah pemasangan sistem akan memenuhi spesifikasi yang dibuat pada akhir fase analisis sistem. Perancangan sistem dapat dibagi dalam 2 bagian, yaitu:

- 1. Perancangan sistem secara umum / perancangan konseptual, perancangan logikal / perancangan secara makro.
- 2. Perancangan sistem terinci / perancangan sistem secara fisik.

Adapun Juga tujuan dari perancangan sistem dapat dirinncikan sebagai berikut:

- 1. Untuk memenuhi kebutuhan kepada pemakai sistem.
- 2. Untuk memberikan gambaran yang jelas dan rancang bangun yang lengkap kepada pemograman komputer dan ahli-ahli teknik lainnya yang terlibat.
- 3. Membentuk sistem agar dapat diterima dengan baik oleh pengguna sistem maupun operator.
- 4. Memenuhi spesifikasi fungsional.
- 5. Memenuhi batasan-batasan media target implementasi, target sistem komputer.
- 6. Memenuhi kebutuhan-kebutuhan inplisit dan eksplisit berdasarkan kinerja dan penggunaan sumber daya.
- 7. Memenuhi perancangan inplisit dan eksplisit berdasarkan bentuk hasil rancangan yang dikehendaki.
- 8. Memenuhi keterbatasan-keterbatasan proses perancangan seperti lama atau biaya.

Pada perancangan sistem terdapat tahapan-tahapan, tahapan perancangan sistem adalah merancang sistem dengan terperinci berdasarkan hasil analisis sistem, sehingga menghasilkan model sistem baru. Berikut tahapan-tahapan perancangan sistem:

1. Perancangan Output

Perancangan *Output* tidak dapat diabaikan, karena laporan yang dihasilkan harus memudahkan bagi setiap unsur manusia yang membutuhkan.

2. Perancangan Input

Tujuan dari perancangan *Input* yaitu dapat mengefektifkan biaya pemasukan data, mencapai keakuratan yang tinggi, dan dapat menjamin pemasukan data yang akan diterima dan dimengerti oleh pemakai.

3. Perancangan Proses Sistem

Tujuan dari perancangan proses *system* adalah menjaga agar proses data lancar sehingga dapat menghasilkan informasi yang benar dan mengawasi proses dari sistem.

4. Perancangan Database

Database sistem adalah mengintegrasikan kumpulan dari data yang saling berhubungan satu dengan yang lainnya.

5. Tahapan Perancangan Kontrol

Tujuan perancangan ini agar keberadaan sistem setelah di implementasikan dapat memiliki kehandalan dalam mencegah kesalahan, kerusakan, serta kegagalan proses sistem.

2.5. Rekrutmen

Rekrutmen adalah suatu proses untuk mendapatkan sejumlah Sumber daya Manusia atau mendapatkan karyawan yang berkualitas untuk menduduki suatu jabatan atau pekerjaan dalam suatu perusahaan. Rekrutmen yang dilakukan sesuai prosedur akan menghasilkan sebuah keputusan yang baik. Di mana karyawan yang terpilih bekerja di suatu perusahaan mampu beradaptasi dan menjalankan tugas yang menjadi kewajibannya (Lina, 2020).

2.6. Karyawan

Karyawan adalah orang yang bekerja di suatu perusahaan atau lembaga. Karyawan dapat diartikan juga sebagai orang yang bertugas sebagai pekerja pada suatu perusahaan atau lembaga untuk melakukan operasional tempat kerjanya dengan balas jasa berupa uang (Panjaitan, 2018). Menurut Undang-Undang nomor 13 tahun 2003 tentang ketenagakerjaan pasal1 ayat 2 menyebutkan bahwa karyawan adalah setipa orang yang mampu melakukan pekerjaan guna menghasilkan barang dan jasa.

2.7. Root Cause Analysis (RCA)

Root Cause Analysis (RCA) adalah proses menemukan akar penyebab masalah guna mengidentifikasi solusi yang tepat. RCA memungkinkan dapat melakukan pencegahan dan penyelesaian masalah mendasar secara sistematis. Metode RCA juga dapat disebut sebagai proses pemceahan masalah untuk melakukan investigasi ke dalam suatu masalah, kekhawatiran atau ketidaksesuaian masalah yang ditemukan. RCA membutuhkan investigator untuk menemukan solusi atas masalah yang terjadi dan memahami penyebab mendasar suatu situasi dan memperlakukan masalah tersebut dengan tepat, sehingga mencegah terjadinya kembali permasalahan yang sama.

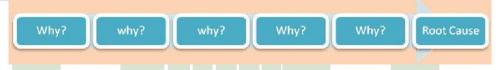
2.7.1. Tahapan-tahapan dalam Root Cause Analysis

Tahapan-tahapan dalam Root Cause Analysis adalah sebagai berikut:

- 1. Mendefinisikan Masalah (*Problem Definition*)
 - Dalam tahap ini yang harus diketahui dan terdefinisi secara jelas adalah masalah apa yang sedang terjadi saat ini, kemudian menjelaskan secara spesifik yang menandakan terjadinya masalah.
- 2. Melakukan Investigasi Akar Penyebab Masalah (*Root Cause Investigation*) Tahap ini merupakan tahap yang paling penting dalam RCA karena ketika salah dalam menemukan akar penyebab masalah maka action plan yang diambil tidak akan dapat menyelesaikan masalah secara tepat sehingga tidak dapat menghindari permasalahan yang sama terulang kembali.
- Mengajukan Action Plan (Deceloping an Action Plan)
 Setelah akar penyebab masalah teridentifikasi, langkah selanjutnya adalah mengembangkan Action Plan. Pada tahap ini harus berisi solusi yang akan

diambil untuk mengatasi akar penyebab dan mencegah masalah terulang kembali di masa depan.

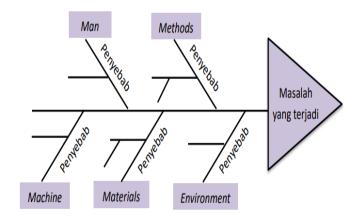
4. Mengimplementasikan *Action Plan* (*Implementing the Action Plan*)


Pada tahap ini akan ditetapkan siapa yang bertanggung jawab untuk implementasi atas *action plan*, bagaimana agar action plan dapat dijalankan.

2.7.2. Metode Pencarian Akar Masalah

Terdapat beberapa metode dalam pencarian akar masalah, yaitu:

1. The 5-Whys


The 5-Whys adalah metode paling sederhana untuk analisis akar penyebab terstruktur. Metode ini adalah metode mengajukan pertanyaan yang digunakan untuk mengeksplorasi penyebab hubungan yang mendasari masalah. Metode ini terus bertanya pertanyaan 'Mengapa?' sampai kesimpulan berarti tercapai.

Gambar 2. 3 Contoh Gambar The 5-Whys

2. Fishbone Diagrams

Metode kedua adalah fishbone diagram, metode ini menggambarkan masalah dalam suatu diagram atau gambar untuk lebih memudahkan dalam memahami gambaran permasalahan dan faktor-faktor penyebab munculnya permasalahan dalam satu diagram atau gambar.

Gambar 2. 4 Contoh Gambar Fishbone Diagrams

Sumber: (Susendi et al., 2021)

Langkah-langkah dalam penyusuna<mark>n Fishbone Diagram atau Cause and Effect Diagram (CED) menurut Ishikawa yaitu:</mark>

- a) Tetapkan permasalahan yang akan dipecahkan atau dikendalikan.
- b) Tuliskan permasalahan dibagian kanan dan gambar panah dari arah kiri ke kanan.
- c) Tuliskan faktor-faktor utama yang berpengaruh atau berakibat pada permasalahan pada cabang utama.
- d) Menemukan penyebab untuk masing-masing kelompok penyebab masalah dan tuliskan pada ranting berdasarkan kelompok faktor-faktor penyebab utama. Penyebab masalah ini dirinci lebih lanjut dengan mencari sebab dari sebab yang telah diidentifikasi sebelumnya menjadi lebih detail.
- e) Pastikan bahwa setiap detail dari sebab permasalahan telah digambarkan.

3. Brainstorming

Brainstorming adalah metode untuk memaksimalkan kreativitas kelompok dalam pemecahan masalah. Brainstorming adalah teknik dimana suatu kelompok mencoba menemukan solusi untuk masalah tertentu dengan mengumpulkan semua ide secara spontan dari anggotanya. Brainstorming membantu kelompok menghasilkan banyak ide tanpa penilaian dalam waktu

singkat. Setiap anggota kelompok belajar menawarkan ide. Siklus ini berulang sampai semua ide habis.

Brainstorming bisa dilakukan secara individu dan berkelompok. Brainstorming individu cenderung menghasilkan ide-ide yang lebih luas daripada brainstorming kelompok, tetapi cenderung tidak mengembangkan ide-ide secara efektif, terutama ketika individu menghadapi masalah yang tidak dapat mereka pecahkan. Individu bebas untuk mengeksplorasi ide-ide pada waktunya sendiri tanpa rasa takut dikritik, dan tanpa didominasi oleh anggota kelompok lainnya. Sementara brainstorming kelompok mengembangkan ide-ide lebih dalam dan efektif, seperti ketika kesulitan dalam pengembangan ide oleh individu. Brainstorming kelompok cenderung menghasilkan lebih sedikit ide, karena waktu yang dihabiskan untuk mengembangkan ide-ide secara mendalam (Susendi et al., 2021).

Gambar 2. 5 Tahapan Brainstorming

SUMATE Sumber: (Susendi et al., 2021)

2.7.3. Tujuan Metode Root Cause Analysis

Berikut adalah tujuan dari metode Root Cause Analysis:

 Mengidentifikasi Akar Penyebab Masalah
 Tujuan utama dari RCA adalah mengidentifikasi akar penyebab masalah
 yang mendasarinya. Ini adalah langkah pertama untuk mengatasi masalah secara efektif, dengan mengetahui akar penyebabnya dan dapat mengambil tindakan yang tepat.

2. Mencegah Kembali Masalah

Metode ini juga bertujuan untuk mencegah masalah serupa terjadi lagi dengan memahami akar penyebab masalah, dengan mengembangkan rencana perbaikan yang tepat untuk mencegah kemungkinan terjadinya masalah yang sama.

3. Pembelajaran pada Organisasi

Metode ini mendorong pembelajaran pada organisasi atau instansi dengan menganalisis masalah dan penyebabnya, organisasi aau instansi dapat memahami pengalaman yang pernah terjadi dan mencegah terulangnya masalah yang sama di masa depan.

4. Meminimalkan Risiko dan Kerugian

RCA bertujuan untuk meminimalkan risiko yang terkait dengan masalah dan menghindari kerugian finansial atau reputasi yang dapat timbul akibat masalah yang terjadi.

2.8. PT. Expravet Nasuba

PT. Expravet Nasuba yang beralamat di Jalan. K. L. Yos Sudarso, Km. 8,8, No. 88, Mabar, Medan Deli, merupakan salah satu perusahaan besar di bidang produksi olahan hasil peternakan dan perikanan. Perusahaan ini telah memiliki pengalaman hampir 1 dekade dan telah berhasil membangun reputasi yang kuat. PT. Expravet Nasuba telah berkembang pesat dan dapat menyediakan produkproduk berkualitas dalam industri peternakan dan perikanan. Perusahaan ini memiliki visi untuk meningkatkan kualitas produk pangan yang dihasilkan dari sumber daya peternakan dan perikanan, serta berkomitmen untuk menjaga kelestarian lingkungan sepanjang proses produksi mereka.

2.9. Web

Web adalah istilah yang sangat familiar di dunia modern saat ini. Internet dan web adalah dua bagian yang saling terkait. Banyak orang berasumsi bahwa internet

dan web adalah bagian yang sama, dan menggunakan istilah ini secara bergantian. Namun, internet dan web adalah dua hal yang berbeda. Istilah Internet mengacu pada jaringan global server yang memungkinkan berbagi informasi yang terjadi melalui web. Web adalah bagian terbesar dari internet.

Web, atau World Wide Web (W3), pada dasarnya adalah sistem server Internet yang mendukung dokumen yang diformat secara khusus. Dokumen tersebut diformat dalam bahasa markup yang disebut HTML (HyperText Markup Language) yang mendukung tautan ke dokumen lain, serta file grafik, audio, dan video. Browser seperti Internet Explorer, Google Chrome atau Mozilla Firefox digunakan untuk mengakses dokumen web, atau halaman web, yang terhubung melalui link. Web adalah salah satu cara informasi dibagikan melalui Internet; lainnya termasuk email, pesan instan dan File Transfer Protocol (FTP).

2.10. Visual Studio Code

Visual Studio Code adalah aplikasi code editor buatan Microsoft yang dapat dijalankan di semua perangkat desktop secara gratis. Kelengkapan fitur dan ekstensi membuat code editor ini menjadi pilihan utama para pengembang. Visual Studio Code bahkan mendukung hampir semua sistem operasi seperti Windows, Mac OS, Linux, dan lain sebagainya. Visual Studio adalah software yang digunakan untuk menulis sintak ketika membuat suatu aplikasi. Setidaknya ada empat jenis Visual Studio, di antaranya IDE, App Center, Azure DevOps, dan Visual Studio Code.

Gambar 2. 6 Logo Visual Studio Code

2.11. Hypertext Markup Language (HTML)

Hypertext Markup Language (HTML) merupakan sebuah bahasa buat menampilkan konten pada web. HTML sendiri merupakan bahasa pemrograman yang bebas, ialah tidak dimiliki oleh siapapun pengembangnya, serta bisa dikatakan

menjadi sebuah bahasa yang dikembangkan bersama-sama secara global. HTML juga tidak terlepas berasal JavaScript, yang artinya bahasa pemrograman client-side buat menyampaikan efek dinamis. JavaScript, mampu menghasilkan web terlihat lebih bergerak maju serta interaktif.

2.12. Cascading Style Sheet (CSS)

CSS adalah bahasa Cascading Style Sheet dan biasanya digunakan untuk mengatur tampilan elemen yang tertulis dalam bahasa markup, seperti HTML. CSS berfungsi untuk memisahkan konten dari tampilan visualnya di situs. CSS digunakan bersama dengan bahasa markup, seperti HTML dan XML untuk membangun sebuah website yang menarik dan memiliki fungsi yang berjalan baik. CSS juga berguna untuk mengatasi keterbatasan HTML dalam mengatur format halaman website.

Gambar 2. 8 Logo CSS

2.13. PHP (Hypertext Preprocessor)

PHP (Hypertext Preprocessor) merupakan bahasa pemrograman yang digunakan untuk menerjemahkan kode program sehingga dapat dibaca oleh bahasa mesin. Bahasa pemrograman ini bekerja pada sebuah webserver dengan cara kerja yaitu server akan membaca terlebih dahulu script PHP lalu kemudian mengeksekusinya yang selanjutnya akan ditampilkan kembali oleh webserver. PHP merupakan bahasa pemrograman server-side atau bahasa sisi server dimana syntax PHP tidak terlihat jika user memilih "view source" pada web browser (Irawan, 2020).

Gambar 2. 9 Logo PHP

2.14. XAMPP

XAMPP merupakan media atau web server localhost yang bisa digunakan secara offline. Melalui XAMPP, pengguna dapat mengelola database yang berada di localhost tanpa memerlukan akses internet sehingga jika koneksi internet terganggu dan tidak dapat mengakses web server, pengguna tidak lagi perlu khawatir. XAMPP merupakan software yang dikembangkan oleh sekelompok tim Apache Friend pada 2002 dan bisa didapatkan secara gratis dengan label General Public License (GNU). Sebagai software open source berbasis web server, XAMPP ini memiliki berbagai program dan mendukung berbagai sistem operasi yang umum digunakan, seperti Linux, Windows, MacOS, dan Solaris. Aplikasi ini berfungsi sebagai server lokal yang sudah mencakup program Apache, MySQL, dan PHP.

XAMPP disebut juga sebagai *standalone server* atau *server* yang dapat berdiri sendiri sehingga memudahkan pengguna saat menjalankan proses pengeditan, desain, dan pengembangan aplikasi. Adapun XAMPP memiliki kepanjangan X (*cross platform*), A (*Apache*), M (MySQL/*MariaDB*), P (PHP), dan P (*Perl*). Kepanjangan XAMPP tersebut merupakan program yang tersedia pada *software* ini (Riyadli et al., 2020).

Gambar 2. 10 Logo XAMPP

2.15. Database

Database adalah koleksi data yang sistematis dan sistematis yang disimpan secara elektronik. Ini dapat berisi semua jenis data, termasuk kata, angka, gambar, video, dan file. Anda dapat menggunakan perangkat lunak yang disebut sistem manajemen database (DBMS) untuk menyimpan, mengambil, dan mengedit data. Dalam sistem komputer, database kata juga dapat merujuk ke DBMS apa pun, ke sistem database, atau ke aplikasi yang terkait dengan database.

2.16. MySQL

MySQL termasuk jenis *Relational Database Management System*, MySQL merupakan program basis data yang dapat mengirim dan menerima data dan bersifat *open source*. MySQL umumnya digunakan untuk mengolah data, pengolahan data yang umum digunakan pada MySQL adalah *CREATE*, *UPDATE*, *DELETE*, *UPDATE*, dan *SELECT*.

Gambar 2. 11 Logo MySQL

2.17. Unified Modelling Language (UML)

UML adalah bahasa pemodelan tujuan umum, yang berarti bahwa penggunaannya tidak terbatas pada area aplikasi tertentu. Ini memberikan konsep bahasa dan pemodelan dan notasi grafis intuitif untuk pemodelan berbagai area aplikasi, memungkinkan sistem perangkat lunak untuk ditentukan, dirancang, divisualisasikan, dan didokumentasikan. Hasil pemodelan dengan UML adalah model grafis yang menawarkan pandangan berbeda dari suatu sistem dalam bentuk berbagai diagram.

2.17.1. Use Case Diagram

Use case diagram adalah sarana untuk menggambarkan persyaratan sebuah sistem yaitu sistem apa yang seharusnya digunakan. Use case diagram menggambarkan fungsionalitas yang diharapkan dari sebuah sistem. Use case diagram berfungsi untuk melakukan pekerjaan tertenu yang menggambarkan bisnis proses sistem itu sendiri (Destriana & Dkk, 2021). Simbol-simbol yang digunakan dalam Use Case Diagram yaitu:

Tabel 2. 1 Simbol-Simbol Use Case Diagram

Gambar	Keterangan		
	Use case menggambarkan fungsionalitas yang disediakan system		
	sebagai unit-unit yang saling bertukar pesan antar unit dengan		
aktor yang dinyatakan dengan menggunakan kata kerja.			
UNIVERSITAS ISLAM NEGERI			
CHAATEDA HITADA AAEDANI			
SUMAI EKA UTAKA MEDAN			

	Actor atau Aktor adalah Abstraction dari sistem lain yang			
	mengaktifkan fungsi dari target sistem. Untuk			
	mengidentifikasikan aktor, harus ditentukan pembagian tenaga			
2	kerja dan tugas-tugas yang berkaitan dengan peran pada konteks			
	target sistem. Orang atau sistem bisa muncul dalam beberapa			
/ \	peran. Perlu dicatat bahwa actor berinteraksi dengan use case,			
	tetapi tidak memiliki <i>control</i> terhadap <i>use case</i> .			
	Asosiasi antara actor dan <i>use case</i> , digambarkan dengan garis.			
	Tanpa panah yang megindikasikan siapa atau apa yang meminta			
	interaksi secara langsung dan bukannya mengindikasikan data.			
	Asosiasi anatara aktor dan <i>use case</i> yang menggunakan panah			
	, , ,			
\longrightarrow	terbukauntuk mengindikasikan bila aktor berinteraksi secara Pasif			
	dengan sistem.			
	Include, merepresentasikan use case yang di perlukan dalam use			
< <include>></include>	case lain. Use case yang disertakan harus di jalankan untuk			
	menyelesaikan <i>use case</i> induk.			
	Extends, merepresentasikan use case opsional yang mungkin			
<	diperlukan dalam situasi tertentu dalam use case induk. Use case			
< <extends>></extends>	ekstensi dijalankan hanya jika kondisi tertentu terpenuhi.			

Berikut ini merupakan contoh Use Case Diagram

Gambar 2. 12 Contoh Use Case Diagram

Sumber: (Handayani, 2018)

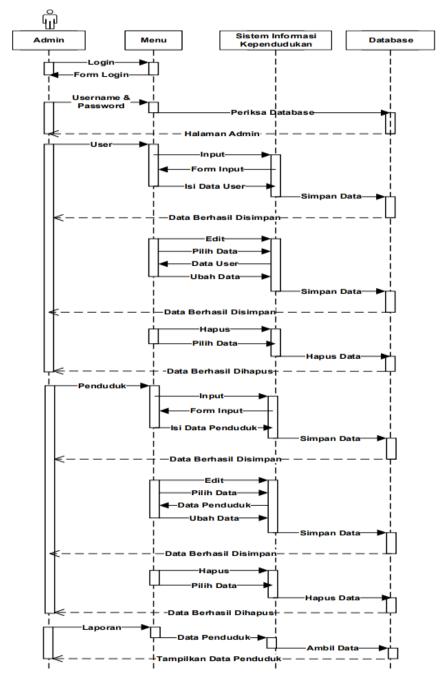
2.17.2. Activity Diagram

Menurut Haviluddin, diagram activity menunjukkan aktivitas sistem dalam bentuk kumpulan aksi-aksi, bagaimana masing –masing aksi tersebut dimulai, keputusan yang mungkin terjadi hingga berakhirnya aksi. Activity diagram juga dapat menggambar proses lebih dari satu aksi dalam waktu bersamaan, Activity Diagram juga menggambarkann workflow (aliran kerja) atau aktifitas dari sebuah sistem atau proses bisnis (Sukrianto & Diky Alhafizh, 2019). Simbol yang digunakan dalam activity diagram yaitu:

Tabel 2. 2 Simbol-Simbol Activity Diagram

Simbol	Keterangan			
	Start point, menunjukkan awal dari sebuah aktivitas dan diletakkan pada pojok kiri atas			
	End point, menunjukkan akhir dari sebuah aktivitas			
Activities	Activities, menggambarkan suatu proses atau kegiatan			
	Fork, membagi aktivitas ke beberapa bagian atau untuk menggabungkan dua kegiatan menjadi satu			
	Join, menggabungkan beberapa aktivitas menjadi satu			
VE I	Decision Points, menggambarkan pilihan untuk pengambilan keputusan, true atau false			
	Swimlane, membagi sebuah diagram aktivitas menjadi beberapa bagian terpisah.			

2.17.3. Sequence Diagram


Sequence diagram (diagram urutan) adalah suatu diagram yang memperlihatkan atau menampilkan interaksi-interaksi antar objek didalam sistem yang disusun pada sebuah urutan atau rangkaian waktu. Interaksi antar objek tersebut termasuk pengguna, display, dan sebagainya berupa pesan (message)(Sukrianto & Diky Alhafizh, 2019). Berikut simbol-simbol pada Squence Diagram :

Tabel 2. 3 Simbol-Simbol Sequence Diagram

Simbol	Nama	Keterangan
	(8)	Orang, proses, atau sistem lain
Akteur / Actor	Aktor	yang berinteraksi dengan <i>system</i> informasi yang akan dibuat di luar <i>system</i> informasi yang akan dibuat Itu sendiri.
LifeLine	Lifeline	Menyatakan kehidupan suatu objek.
SU AATEI	Waktu Aktif RSITAS ISLA RA UTA	Menyatakan objek dalam keadaan aktif dan berinteraksi, semua yang terhubung dengan waktu aktif ini adalah sebuah tahapan yang Dilakukan didalamnya
Message1	Pesan tipe call	Menyatakan suatu objek memanggil operasi/ metode yang

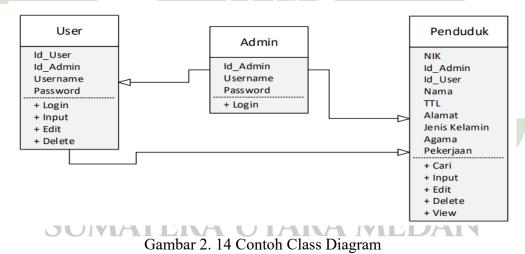
ada pada objek lain atau dirinya sendiri.

Berikut ini merupakan contoh Sequence Diagram

Gambar 2. 13 Contoh Sequence Diagram

Sumber : (Alda, 2020)

2.17.4. Class Diagram


Class Diagram merupakan diagram yang menggambarkan hubungan dari setiap class atau tabel yang terdapat pada database (Alda, 2020). Class diagram terdiri dari atribut dan operasi dengan tujuan pembuat pembuat program dapat membuat hubungan antara dokumentasi perancangan dan perangkat lunak sesuai. Class Diagram juga menjelaskan hubungan apa saja yang terjadi antara suatu objek dengan objek lainnya sehingga terbentuklah suatu sistem aplikasi (Sukrianto & Diky Alhafizh, 2019).

Tabel 2. 4 Simbol-Simbol Class Diagram

Simbol	Keterangan				
	Class, merepresentasikan kelas atau objek.				
Classname	Biasanya nama kelas dituliskan di dalam simbol,				
+ field: type	dan variable atau atribut kelas dapat di letakkan				
+ field: type	di bawah nama kelas.				
	Interface, merepresentasika suatu interface yang				
	diterapkan pada suatu kelas. Biasanya nama				
	interface di letakkan di dalam simbol, dan method				
	yang terdapat pada <i>interface</i> akan				
	diimplementasikan oleh kelas yang menerapkan				
	interface tersebut				
	Association, merepresentasikan hubungan antar				
parent INTIVER	dua atau lebih kelas. Hubungan ini bisa berupa				
SUMATER SUMATER	ketergantungan, asosiasi, dan agregasi antar kelas.				
	Directed association, menunjukkan hubungan				
	asosiasi antara kelas yang saling terkait, dimana				
─	satu kelas memiliki peran yang lebih aktif dalam				
hubungan tersebut.					
Extends	Generalization, menunjukkan hubungan				
Z.ioius -	"spesialisasi-umum" antara kelas yang terkait.				

	Hubungan generalisasi menunjukkan bahwa			
	kelas anak memperluas kelas induk dengan			
menambahkan atribut atau metode baru				
	memperluas perilaku kelas induk.			
	Dependency, merepresentasikan hubungan			
>	dependensi antara dua kelas. Hubungan ini			
056	menunjukkan bahwa satu kelas bergantung pada			
	kelas lainnya untuk dapat berjalan.			
	Aggregation, menunjukkan hubungan "berisi"			
	antara suat <mark>u</mark> kelas dengan kelas yang lain.			
──	Hubungan agregasi dapat didefinisikan sebagai			
	"bagian dari" suatu objek atau "terdiri dari"			
	beberapa objek lainnya.			

Berikut ini merupakan contoh dari class diagram:

Sumber: (Alda, 2020)

2.18. Penelitian Terdahulu

Penelitian terdahulu merupakan penelitian-penelitian yang telah dilakukan sebelumnya dan selanjutnya oleh penulis sebagai acuan untuk melakukan penelitian.

Tabel 2. 5 Penelitian Terdahulu

No	Nama	Judul	Tahun	Hasil Penelitian
	Ardelia	Perancangan Sistem	2019	Pada penelitian ini penulis
	Astriany	Informasi		menghasilkan sebuah sistem
	Rizky dan	Perekrutan		informasi perekrutan
	Irfan	Karyawan Berbasis		karyawan yang dapat
1	Ramadhani	Web Menggunakan		mempermudah HRD PT. Ria
1		PHP dan MySQL di		Indah Mandiri dan
		PT. Ria Indah		mengurangi besarnya biaya
		Mandiri		yang harus dikeluarkan oleh
				Perusahaan setiap kali akan
			7	merekrut karyawan.
	Erna	Perancangan Sistem	2019	Pada penelitian ini penulis
	Astriyani,	Informasi		merancang sebuah sistem
	dkk	Rekrutmen		informasi rekrutmen
		Karyawan Pada		karyawan dengan tahapan
2		Perusahaan Daerah		Analisa menggunakan
_		Air Minum (PDAM)		metode SWOT, serta
		Tirta Benteng Kota		menganalisa rancangan
		Tangerang		sistem yang diusulkan
				menggunakan orientasi
		UNIVERSITAS I	SLAM	objek yaitu UML.
	Sulistiyah	Sistem Informasi	_2020	Pada penelitian ini penulis
	SUIVI	Rekrutmen Magang		menghasilkan sebuah sistem
		di CV. Lasegar		informasi yang efektif
3		Indonesia		membantu CV. Lasegar
		Tangerang		Indonesia dalam proses
				rekrutmen serta membantu
				para pelamar yang ingin

				magang pada perusahaan
				CV. Lasegar Indonesia.
	Rahdian	Konsep MVC Pada	2021	Pada penelitian ini penulis
	Kusuma	Rancang Bangun		berfokus terhadap penerapan
	Atmaja,	Aplikasi Sistem		konsep MVC dalam
	dkk	Informasi		membangun sistem
4		Rekrutmen		informasi rekrutmen
		Karyawan Berbasis		karyawan berbasis web yang
		Web /		membantu staff HRD dalam
		150		pengelolaan data rekrutmen
				karyawan baru.
	Arifuddin	Perancangan Sistem	2022	Pada penelitian ini penulis
	Mustofa,	Informasi		berfokus terhadap metode
	dkk	Perpustakaan SMA		analisis yang digunakan dan
		N 1 Tengaran		menyimpulkan bahwa
		Menggunakan Root		metode Root Cause Analysis
5		Cause Analysis		sangat efektif, karena
3		(RCA)		sifatnya yang mendalam dan
				mengerucut pada suatu
				permasalahan sehingga
				dapat dipakai untuk
				pertimbangan sebuah
		UNIVERSITAS I	SLAM.	perancangan.
	SUM	ATERA U	IAR	A MEDAN

Adapun perbedaan penelitian ini dengan penelitian sebelumnya adalah penelitian terdahulu telah merancang sistem informasi rekrutmen dengan berbagai metode dan pendekatan yang berbeda serta memiliki lingkup yang berbeda. Penelitian ini berfokus mengatasi permasalahan terkait dengan proses rekrutmen karyawan pada PT. Expravet Nasuba dengan mengusulkan Sistem Informasi Rekrutmen Karyawan Berbasis Web Menggunakan Metode *Root Cause Analysis* (RCA).