BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

4.1. Deskripsi Data Hasil Penelitian

Setelah berlangsungnya penelitian diperoleh data hasil kemampuan pemecahan masalah dan tingkat kecemasan matematika siswa. Data diperoleh dari kegiatan pembelajaran yang dilakukan sebanyak 4 kali pertemuan. Pada proses pembelajaran kedua kelas memperoleh perlakuan yang berbeda. Kelas eksperimen mendapatkan pembelajaran dengan pendekatan *Realistic Mathematics Education* (RME), sedangkan kelas kontrol adalah kelas pembanding yang diberi pembelajaran dari guru mata pelajaran itu sendiri. Berikut dijelaskan deskripsi terperinci dari data masing-masing kelompok sampel.

4.1.1. Data Hasil Pretest Kemampuan Pemecahan Masalah Siswa

Pretest adalah tes awal yang diberikan sebelum penelitian berlangsung untuk mendapatkan nilai awal siswa sebelum perlakuan. Setelah diberikan pretest maka diperoleh nilai tes awal hasil belajar matematika siswa yang diperoleh dari dua kelas sampel yaitu kelas kontrol dan kelas eksperimen. Hasil pretest tersebut dijelaskan sebagai berikut:

1) Hasil *Pretest* Hasil Kemampuan Pemecahan Masalah Siswa Kelas Kontrol

Setelah diberikannya tes awal terhadap kelas kontrol, diperoleh 28 data siswa. Nilai *pretest* hasil kemampuan pemecahan masalah siswa dirangkum dalam tabel dibawah ini:

Tabel 4.1 Hasil *Pretest* Kelas Kontrol

Jumlah Siswa	Δ R Δ 28
Rata-rata	22,86
Varians	101,608
Standar deviasi	10,080
Nilai Maksimum	46
Nilai Minimum	7

2) Hasil *Pretest* Hasil Kemampuan Pemecahan Masalah Siswa Kelas Eksperimen

Setelah diberikannya tes awal terhadap kelas eksperimen, di perolehlah 24 data siswa. Nilai *pretest* hasil belajar matematika siswa dirangkum dalam tabel dibawah ini:

Tabel 4.2 Hasil *Pretest* Kelas Eksperimen

Jumlah Siswa	24
Rata-rata	38,50
Varians	65,565
Standar deviasi	8,097
Nilai Maksimum	50
Nilai Minimum	21

Sumber: Hasil Penelitian

3) Hasil *Pretest* Hasil Kemampuan Pemecahan Masalah Siswa Kelas Kontrol dan Kelas Eksperimen

Berikut dirangkum perbandingan hasil *pretest* hasil kemampuan pemecahan masalah matematika siswa kelas kontrol dan kelas eksperimen:

Tabel 4.3 Hasil *Pretest* Kelas Kontrol dan Kelas Eksperimen

Statistika	Kontrol	Eksperimen
Rata-rata	22,86	38,50
Varians	101,608	65,565
Standar deviasi	10,080	8,097
Nilai Maksimum	46	50
Nilai Minimum	7	21

Sumber: Hasil Penelitian

Dari tabel diatas kita dapat membandingkan nilai statistik yang didapatkan kelas kontrol dan kelas eksperimen. Untuk nilai rata-rata pada kelas kontrol adalah 22,86 sedangkan pada kelas eksperimen 38,50. Untuk nilai varians pada kelas kontrol adalah 101,608 sedangkan pada kelas eksperimen adalah 65,565. Untuk standar deviasi pada kelas kontrol adalah 10,080 sedangkan pada kelas eksperimen adalah 8,097. Pada nilai maksimum kelas kontrol 46 dan eksperimen 50, untuk nilai minimum kelas kontrol adalah 7 dan kelas eksperimen adalah 21. Untuk perhitungan lebih jelas dapat dilihat pada **lampiran 11**.

4.1.2. Data Hasil *Posttest* Kemampuan Pemecahan Masalah Siswa

Setelah dilakukannya *pretest* kepada responden maka dapatlah dilakukan penelitian. Pada tahap penelitian kedua kelas sampel mendapat perlakuan yang berbeda. Kelas kontrol diberikan perlakuan pendekatan pembelajaran dari guru mata pelajaran itu sendiri. Sedangkan kelas eksperimen diberi perlakuan dengan pendekatan *Realistic Mathematics Education* (RME). Setelah perlakuan diterapkan maka sampel akan diberi tes akhir berupa *posttest*. Berikut dijelaskan hasil dari *posttest* setiap sampel:

1) Hasil *Posttest* Hasil Kemampuan Pemecahan Masalah Siswa Kelas Kontrol

Setelah diberikannya *posttest* terhadap sampel kelas kontrol, diperolehlah 28 data siswa. Nilai *posttest* hasil kemampuan pemecahan masalah siswa dirangkum dalam tabel dibawah ini:

Tabel 4.4 Hasil *Posttest* Kelas Kontrol

Rata-rata	36,43
Varians	100,847
Standar deviasi	10,042
Nilai Maksimum	60
Nilai Minimum	21

Sumber: Hasil Penelitian

2) Hasil *Posttest* Hasil Kemampuan Pemecahan Masalah Siswa Kelas Eksperimen

Setelah diberikannya *posttest* terhadap sampel kelas eksperimen, diperolehlah 24 data siswa. Nilai *posttest* hasil kemampuan pemecahan masalah siswa dirangkum dalam tabel dibawah ini:

Tabel 4.5 Hasil *Posttest* Kelas Eksperimen

Rata-rata	81,96
Varians	156,476
Standar deviasi	12,509
Nilai Maksimum	100
Nilai Minimum	64

Sumber: Hasil Penelitian

3) Hasil *Posttest* Kemampuan Pemecahan Masalah Siswa Kelas Kontrol dan Kelas Eksperimen

Berikut dirangkum perbandingan hasil *posttest* hasil kemampuan pemecahan masalah matematika siswa kelas kontrol dan kelas eksperimen:

Tabel 4.6 Hasil *Posttest* Kelas Kontrol dan Kelas Eksperimen

Statistika	Kontrol	Eksperimen
Rata-rata	36,43	81,96
Varians	100,847	156,476
Standar deviasi	10,042	12,509
Nilai Maksimum	60	100
Nilai Minimum	21	64

Sumber: Hasil Penelitian

Dari tabel diatas kita dapat membandingkan nilai statistik yang didapatkan kelas kontrol dan kelas eksperimen. Untuk nilai rata-rata pada kelas kontrol adalah 36,43 sedangkan pada kelas eksperimen 81,96. Untuk nilai varians pada kelas kontrol adalah 100,847 sedangkan kelas eksperimen adalah 156,476. Untuk nilai standar deviasi pada kelas kontrol 10,042 sedangkan kelas eksperimen 12,509. Nilai maksimum yang didapatkan kelas kontrol adalah 60 dan kelas eksperimen 100. Untuk nilai minimum kelas kontrol 21 sedangkan kelas eksperimen adalah 64. Untuk perhitungan lebih jelas dapat dilihat pada **lampiran 11**.

4.1.3. Data Hasil Angket Kecemasan Matematika Siswa Kelas Kontrol dan Kelas Eksperimen

Untuk mengukur tingkat kecemasan matematika yang dialami siswa pada kelas kontrol dan kelas eksperimen, peneliti memberikan tes berupa angket yang berisi 20 pernyataan. Dari pemberian angket tersebut, akan diperoleh nilai rata-rata, varians, standar deviasi, nilai maksimum, dan nilai minimum dari kedua kelas yang diteliti. Hasil angket kecemasan matematika siswa dirangkum dalam bentuk tabel sebagai berikut:

Tabel 4.7 Hasil Angket Kelas Kontrol dan Kelas Eksperimen

Statistika	Kontrol	Eksperimen
Jumlah siswa (n)	28	24
Jumlah nilai	1518	1738
Rata-rata	54,32	72,38
Varians	30,967	25,723
Standar deviasi	5,565	5,072
Maksimum	64	88
Minimum	46	66

Sumber: Hasil Penelitian

Dari hasil angket kecemasan matematika siswa kedua kelas sampel, terdapat perbedaan dari nilai statistik kedua kelas. Kelas kontrol mendapat jumlah nilai 1518, dengan nilai rata-rata 54,32, varians 30,567, untuk nilai standar deviasinya 5,565, dan nilai maksimum 64 sedangkan nilai minimum 46. Sementara untuk kelas eksperimen dengan jumlah responden 24 mendapatkan jumlah nilai 1738, nilai rata-rata 72,38, nilai varians 25,723, untuk nilai standar deviasinya adalah 5,072, dan nilai maksimum 88 sedangkan nilai minimum 66. Untuk perhitungan lebih jelas dapat dilihat pada **lampiran 11.**

Berdasarkan data yang telah diuraikan mengenai statistik deskriptif dari hasil angket kecemasan matematika siswa kelas kontrol dan eksperimen. Berikut ini disajikan data tentang tingkat kecemasan matematika pada kelas eksperimen dan kelas kontrol:

Tabel 4.8 Kriteria Tingkat Kecemasan Matematika

Kategori	Interval		
Sangat Rendah	85-100		
Rendah ERSTAS ISLAM	M NEGERI ₆₉₋₈₄		
Sedang RA A	53-68		
Tinggi	37-52		
Sangat Tinggi	20-36		

Sumber: Hasil Penelitian

Tabel 4.9 Tingkat Kecemasan Matematika pada Kelas Kontrol dan Kelas Eksperimen

Kategori	Kelas Kontrol	Kelas Eksperimen
Sangat Rendah	0	0
Rendah	0	0
Sedang	3	12
Tinggi	25	12
Sangat Tinggi	0	0

Sumber: Hasil Penelitian

Dari data yang terdapat pada tabel 4.9 menyatakan bahwa tingkat kecemasan matematika siswa kelas eksperimen lebih rendah dibandingkan kelas kontrol. Hal ini dikarenakan terdapat 12 siswa dengan kriteria sedang dan 12 siswa dengan kriteria tinggi. Hasil tersebut lebih rendah dibandingkan kelas kontrol yang mempunyai 3 siswa dengan kriteria sedang dan 25 siswa dengan kriteria tinggi. Untuk perhitungan lebih jelas dapat dilihat pada **lampiran 12.**

4.2. Uji Prasyarat Analisis

Sebelum melakukan pengujian hipotesis peneliti terlebih dahulu melakukan uji prasyarat. Dalam uji prasyarat analisis ini akan dilakukan uji normalitas dan uji homogenitas.

4.2.1. Uji Normalitas Data

Uji normalitas data dilakukan untuk mengetahui apakah data berdistribusi normal atau tidak. Pada penelitian ini pengujian normalitas dapat menggunakan rumus liliefors dengan taraf signifikansi $\alpha=0,05$. Berikut ini disajikan data hasil perhitungan uji normalitas kemampuan pemecahan masalah pada kelas eksperimen dan kelas kontrol.

Tabel 4.10 Hasil Uji Normalitas Kemampuan Pemecahan Masalah Kelas Eksperimen dan Kelas Kontrol

	Tests of Normality							
		Kolmo	gorov-Sn	nirnov ^a	Sha	Shapiro-Wilk		
	Kelas	Statistic Df Sig. Statistic df S						
Hasil	Pretest Kontrol	.149	28	.111	.964	28	.437	
	Postest Kontrol	.134	28	.200*	.948	28	.175	
	Pretest Eksperimen	.127	24	.200*	.933	24	.113	
	Postest Eksperimen	.145	24	.200*	.903	24	.025	

^{*.} This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Dalam tabel 4.10. diatas dapat dilihat interpretasi, statistik merupakan nilai statistik uji *Kolmogorov-Smirnov*, df merupakan jumlah sampel yang digunakan dalam uji, dan sig merupakan nilai P (P-value) yang digunakan untuk menentukan apakah data berdistribusi normal atau tidak. Dengan kriteria pengambilan keputusan jika nilai sig (p-value) > 0.05, maka Ho diterima dan Ha ditolak, menunjukkan bahwa data sampel berasal dari populasi yang berdistribusi normal. Namun, jika nilai sig (p-value) < 0.05, maka Ho ditolak dan Ha diterima, yang berarti data sampel berasal dari populasi yang tidak berdistribusi normal.

Hasil analisis tersebut mengungkapkan bahwa hasil uji normalitas dengan pengujian Kolmogorov-Smirnov (karna sampel > 50) pada taraf signifikansi $\alpha = 0,05$ diperoleh nilai sig sebesar 0,111 > 0,05 menunjukkan bahwa data pretest kelas kontrol normal. Nilai posttest dikelas kontrol memiliki nilai sig sebesar 0,200 > 0,05 menunjukkan bahwa data posttest kelas kontrol juga berdistribusi normal. Dikelas eksperimen juga terlihat nilai sig sebesar 0,200 > 0,05 yang menunjukkan bahwa data pretest dikelas eksperimen berdistribusi normal. Nilai posttest pada kelas eksperimen memiliki nilai sig sebesar 0,200 > 0,05 menunjukkan bahwa data posttest dikelas eksperimen juga berdistribusi normal. Untuk perhitungan lebih jelas dapat dilihat pada **lampiran 13.**

Berikut ini juga disajikan hasil perhitungan uji normalitas kecemasan matematika pada kelas eksperimen dan kelas kontrol.

Tabel 4.11 Hasil Uji Normalitas Kecemasan Matematika Kelas Kontrol dan Kelas Eksperimen

Tests of Normality									
		Kolmogorov-Smirnov ^a Shapiro-Wilk				Kolmogorov-Smirnov ^a			ilk
	Kelas	Statistic Df Sig. Statistic df Sig					Sig.		
Hasil	Pretest Kontrol	.112	28	.200*	.970	28	.570		
	Postest Kontrol	.130	28	.200*	.938	28	.097		
	Pretest Eksperimen	.133	24	.200*	.938	24	.149		
	Postest Eksperimen	.139	24	.200*	.904	24	.027		
*. This is a lower bound of the true significance.									

a. Lilliefors Significance Correction

Hasil analisis tersebut mengungkapkan bahwa hasil uji normalitas dengan Kolmogorov-Smirnov pada taraf signifikansi $\alpha=0.05$ diperoleh nilai pretest dan posttest di kelas kontrol maupun kelas eksperimen sebesar 0,200 dimana nilai

tersebut lebih besar daripada $\alpha = 0.05$. Berdasarkan hasil ini dapat disimpulkan bahwa data hasil angket kecemasan matematika kelas kontrol dan eksperimen berdistribusi normal. Untuk perhitungan lebih jelas dapat dilihat pada **lampiran 14.**

4.2.2. Uji Homogenitas

Uji homogenitas dilakukan pada penelitian ini untuk mengetahui apakah suatu data berasal dari populasi yang variansnya sama (homogen) atau berbeda (heterogen). Uji homogenitas yang dilakukan pada penelitian ini adalah uji *Levene* menggunakan SPSS 30. Berikut ini adalah hasil uji homogenitas kemampuan pemecahan masalah pada kelas eksperimen dan kelas kontrol.

Tabel 4.12 Hasil Uji Homogenitas Nilai Kemampuan Pemecahan Masalah Kelas Kontrol dan Kelas Eksperimen

Test of Homogeneity of Variance									
	Levene Statistic df1 df2 Sig.								
Hasil	Based on Mean	2.629	3	100	.054				
	Based on Median	2.045	3	100	.112				
	Based on Median and	2.045	3	95.39	.113				
	with adjusted df			7					
	Based on trimmed mean	2.599	3	100	.056				

Berdasarkan hasil analisis uji homogenitas dengan uji *Levene Statistic* pada taraf signifikansi $\alpha = 0.05$ pada based on Mean menghasilkan Sig. 0,054 yang lebih besar dari pada nilai $\alpha = 0.05$. Berdasarkan hasil uji tersebut dapat disimpulkan bahwa kemampuan pemecahan masalah siswa kelas eksperimen dan kelas kontrol berasal dari populasi yang sama (homogen).

Berikut ini adalah hasil uji homogenitas kecemasan matematika pada kelas eksperimen dan kelas kontrol.

Tabel 4.13 Hasil Uji Homogenitas Nilai Kecemasan Matematika Kelas Kontrol dan Kelas Eksperimen

	Test of Homogeneity of Variance										
		Levene Statistic	df1	df2	Sig.						
Nilai	Based on Mean	1.026	1	50	.316						
	Based on Median	.795	1	50	.377						
	Based on Median and	.795	1	49.999	.377						
	with adjusted df										
	Based on trimmed mean	1.112	1	50	.297						

Berdasarkan hasil analisis uji homogenitas dengan uji *Levene Statistic* pada taraf signifikansi $\alpha = 0.05$ pada based on Mean menghasilkan Sig. 0,316 yang lebih besar

dari pada nilai $\alpha = 0.05$. Berdasarkan hasil uji tersebut dapat disimpulkan bahwa kemampuan pemecahan masalah siswa kelas eksperimen dan kelas kontrol berasal dari populasi yang sama (homogen). Untuk perhitungan lebih jelas dapat dilihat pada **lampiran 15.**

4.2.3. Uji Linieritas

Pengujian linearitas digunakan untuk mengevaluasi apakah distribusi data yang diperoleh linier atau tidak, karena pengujian ini prasyarat untuk penggunaan uji regresi linier sederhana. Kriteria pengambilan keputusannya adalah jika *deviation from linearity* > 0,05 maka hubungan antara variabel linear. Untuk mempermudah perhitungan, peneliti menggunakan bantuan program *SPSS vers 30* dengan hasil berikut:

Tabel 4.14 Hasil Uji Linearitas RME dan Kemampuan Pemecahan masalah

ANOVA Table											
			Sum of		Mean						
			Squares	Df	Square	F	Sig.				
Kemampuan	Between	(Combined)	5536.500	15	369.100	1.164	.431				
Pemecahan	Groups	Linearity	167.795	1	167.795	.529	.488				
Masalah *		Deviation from	5368.705	14	383.479	1.209	.407				
RME		Linearity									
	Within Grou	Within Groups		8	317.167						
	Total		8073.833	23							

Berdasarkan hasil uji linearitas diatas, diketahui bahwa nilai *deviation from linearity* sebesar $0,407 \ge 0,05$. Maka berdasarkan kriteria pengambilan keputusan dapat disimpulkan bahwa hubungan antara pendekatan *realistic mathematics education* dan kemampuan pemecahan masalah linier.

Berikut ini adalah hasil uji linearitas *realistic mathematics education* dan kecemasan matematika siswa RSITAS ISLAM NEGERI

Tabel 4.15 Hasil Uji Linearitas RME dan Kecemasan Matematika

	ANOVA Table											
			Sum of		Mean							
			Squares	Df	Square	F	Sig.					
Kecemasan	Between	(Combined)	410.958	13	31.612	1.750	.190					
Matematika *	Groups	Linearity	186.016	1	186.016	10.296	.009					
RME		Deviation from	224.943	12	18.745	1.038	.484					
		Linearity										
	Within Group	ps	180.667	10	18.067							
	Total		591.625	23								

Berdasarkan hasil uji linearitas diatas, diketahui bahwa nilai *deviation from linearity* sebesar $0.484 \ge 0.05$. Maka berdasarkan kriteria pengambilan keputusan

dapat disimpulkan bahwa hubungan antara pendekatan *realistic mathematics education* dan kecemasan matematika linier.

4.2.4. Persamaan Regresi Linier Sederhana

Persamaan regresi linier sederhana ini digunakan untuk mengetahui hubungan antara pendekatan *realistic mathematics education* dengan kemampuan pemecahan masalah matematika siswa. Untuk mengetahui hal tersebut, peneliti menggunakan bantuan program *SPSS ver 30* dengan hasil sebagai berikut:

Tabel 4.16 Hasil Uji Regresi RME dan Kemampuan Pemecahan Masalah

	Coefficients ^a											
			standardized oefficients	Standardized Coefficients								
M	lodel	В	Std. Error	Beta	T	Sig.						
1	(Constant)	65.231	13.988		4.663	<.001						
	Rme	.250	.365	.144	.683	.502						
a.	Dependent V	ariable: I	Kemampuan Peme	ecahan Masalah								

Pada hasil uji regresi diatas, diketahui bahwa nilai a = 65,231 dan nilai b = 0,250 sehingga diperoleh persamaan regresi sebagai berikut:

$$\hat{Y} = a + bX$$

$$\hat{Y} = 65,231 + 0,250X$$

Persamaan tersebut merupakan pertambahan bila b bertanda positif dan penurunan b bertanda negatif. Dari koefisien-koefisien persamaan regresi linier sederhana di atas, diketahui konstan sebesar 65,231 menunjukkan bahwa jika variabel RME bernilai nol atau tetap maka akan meningkatkan kemampuan pemecahan masalah siswa sebesar 65,231%. Variabel pendekatan RME 65,231 menunjukkan bahwa jika variabel RME meningkat 1 satuan maka akan meningkatkan kemampuan pemecahan masalah siswa sebesar 0,250 satuan atau sebesar 25%. Maka dapat disimpulkan bahwa terdapat pengaruh pendekatan *realistic mathematics education* terhadap kemampuan pemecahan masalah.

Berikut ini adalah hasil uji regresi *realistic mathematics education* dan kecemasan matematika siswa.

	Tabel 4.17 Hasil Uji Regresi RME dan Kecemasan Matematika											
	Coefficients ^a											
M	lodel	В	Std. Error	Beta	T	Sig.						
1	(Constant)	54.675	5.641		9.692	<.001						
	Rme	.322	.322 .101 .561 3.176 .00									
a.	Dependent V	ariable: I	Kecemasan Maten	natika								

Pada hasil uji regresi diatas, diketahui bahwa nilai a = 54,675 dan nilai b =0,322 sehingga diperoleh persamaan regresi sebagai berikut:

$$\hat{Y} = a + bX$$

 $\hat{Y} = 54,675 + 0,322X$

Dari koefisien-koefisien persamaan regresi linier sederhana di atas, diketahui konstan sebesar 54,675 menunjukkan bahwa jika variabel RME bernilai nol atau tetap maka akan mengurangi kecemasan siswa sebesar 54,675%. Variabel pendekatan RME 54,675 menunjukkan bahwa jika variabel RME meningkat 1 satuan maka akan mengurangi kecemasan siswa sebesar 0,322 satuan atau sebesar 32%. Maka dapat disimpulkan bahwa terdapat pengaruh pendekatan realistic mathematics education terhadap kecemasan matematika siswa.

4.2.5. Uji Koefisien Determinasi

Koefisien determinasi (R square) bertujuan untuk mengetahui seberapa besar pengaruh variabel independen mempengaruhi variabel dependen.

Tabel 4.18 Hasil Uji Koefisien Determinasi Kemampuan Pemecahan Masalah

	Model Summary										
Adjusted R Std. Error of t											
Model	R	R Square	Square	Estimate							
1	.144 ^a	.021	024	18.957							
a. Predic	ctors: (Const	ant), Rme									

Berdasarkan hasil *output SPSS* diatas, nilai *R Square* yang besarnya 0,21 (21%) menunjukkan bahwa pengaruh pendekatan realistic mathematics education terhadap kemampuan pemecahan masalah sebesar 21%. Artinya, pengaruh yang ditimbulkan pendekatan realistic mathematics education terhadap kemampuan pemecahan masalah termasuk kecil.

Berikut ini adalah hasil uji koefisien determinasi realistic mathematics education dan kecemasan matematika siswa

Tabel 4.19 Hasil Uji Koefisien Determinasi Kecemasan Matematika

	Model Summary										
Adjusted R Std. Error of t											
Model	R	R Square	Square	Estimate							
1	.561a	.314	.283	4.294							
a. Predic	ctors: (Const	ant), Rme									

Berdasarkan hasil *output SPSS* diatas, nilai *R Square* yang besarnya 0,314 (31,4%) menunjukkan bahwa pengaruh pendekatan *realistic mathematics education* terhadap kecemasan matematika sebesar 31,4%. Artinya, pengaruh yang ditimbulkan pendekatan *realistic mathematics education* terhadap kecemasan matematika termasuk kecil.

4.2.6. Data Hasil N-gain Pretest dan Postest Kelas Kontrol dan Kelas Eksperimen

N-Gain digunakan untuk mengukur peningkatan atau efektivitas dari pembelajaran. Dalam uji N-gain, rata-rata skor awal (pretest) dan skor akhir (posttest) dibandingkan untuk menguji peningkatannya.

Berikut ini adalah tabel hasil perhitungan N-gain pada kelas eksperimen dan kelas kontrol.

Tabel 4.20 Hasil Uji N-gain Kemampuan Pemecahan Masalah dan Angket Kecemasan Matematika

Instrumen	Skor	Skor	N-gain	N-gain
	Maksimal	Minimal	(Score)	(Persen)
Soal				
Kemampuan	100%	58%	0,65	65%
Pemecahan	100%	36%	0,03	03%
Masalah	LIMINEDCIT		MECEDI	
Angket	UNIVERSII	ASISLAN	REGERI	
Kecemasan	88%	66%	0,39	39%
Matematika			M X 14HLT	// XI \

Sumber: Hasil Penelitian

Berdasarkan hasil perhitungan uji N-gain tersebut menunjukkan bahwa nilai N-gain pada soal kemampuan pemecahan masalah sebesar 0,65 dalam kriteria gain yang telah ditetapkan termasuk kedalam peningkatan sedang, berdasarkan N-gain persen pada soal kemampuan pemecahan masalah adalah sebesar 65% termasuk kedalam kategori cukup efektif dengan nilai score gain minimal 58% dan maksimal 100%. Begitu juga hasil perhitungan N-gain angket yaitu 0,39 yang termasuk dalam

peningkatan sedang, berdasarkan peningkatan N-gain persen pada angket sebesar 39% termasuk kedalam kategori tidak efektif dengan nilai score gain minimal 66% dan nilai maksimal 88%. Perhitungan lebih jelas dapat dilihat pada **lampiran 16.**

4.3. Hipotesis

Hasil dari uji prasyarat analisis yaitu uji normalitas dan uji homogenitas menunjukkan bahwa hasil tes kemampuan pemecahan masalah dan kecemasan matematika siswa pada kelas eksperimen dan kelas kontrol merupakan data yang berdistribusi normal dan mempunyai varians yang sama (homogen). Berdasarkan hasil uji tersebut, maka selanjutnya dilakukan uji *Independent Sample T test* dengan SPSS 30.

Uji hipotesis dilakukan untuk mengetahui apakah pendekatan pembelajaran *Realistic Mathematics Education* (RME) berpengaruh terhadap kemampuan pemecahan masalah siswa dan kecemasan matematika siswa. Hipotesis yang diajukan adalah sebagai berikut:

Hipotesis I

 H_0 : Tidak terdapat pengaruh pendekatan *Realistic Mathematic Education* terhadap kemampuan pemecahan masalah matematika siswa kelas VIII SMP Muhammadiyah 7 Medan materi SPLDV

 H_a : Terdapat pengaruh pendekatan *Realistic Mathematic Education* terhadap kemampuan pemecahan masalah matematika siswa kelas VIII SMP Muhammadiyah 7 Medan materi SPLDV

Hipotesis II

 H_0 : Tidak terdapat pengaruh pendekatan *Realistic Mathematic Education* terhadap kecemasan matematika siswa kelas VIII SMP Muhammadiyah 7 Medan

Ha: Terdapat pengaruh pendekatan Realistic Mathematic Education terhadap kecemasan matematika siswa kelas VIII SMP Muhammadiyah 7 Medan
 Syarat uji hipotesis yang digunakan adalah sebagai berikut:

- Jika nilai signifikansi ≤ 0.05 , maka H_0 ditolak dan H_a diterima.
- Jika nilai signifikansi > 0,05, maka H_0 diterima dan H_a ditolak.

a. Kemampuan Pemecahan Masalah

Hasil uji Independent Sample T test dapat dilihat pada baris Equal variances assumed, hal ini dikarenakan varians data dari kedua kelas homogen. Selanjutnya, pada baris t-test for equality means diperoleh harga t=-14.556 dan nilai Sig. (2 tailed) < 0,001 yang berarti nilai tersebut lebih kecil dari taraf signifikansi $\alpha=0.05$ (0,001 < 0,05) atau H_0 ditolak dan H_a diterima. Berdasarkan hal tersebut dapat disimpulkan bahwa rata-rata kemampuan pemecahan masalah siswa yang diajarkan dengan menggunakan pendekatan pembelajaran Realistic Mathematics Education lebih tinggi dibandingkan siswa yang diajarkan dengan menggunakan pendekatan konvensional. Berikut ini disajikan data hasil perhitungan uji Independent Sample T test.

Tabel 4.21 Hasil Uji *Independent Sample T test* Kemampuan Pemecahan Masalah Siswa

	Independent Samples Test											
		for Equ	e's Test uality of ances	t-test for Equality of Means								
		F	Sig.	Т	Df	Signifi	cance	Mean Differenc	Std. Error	Interva	onfidence al of the rence	
			Olg.	'	5	One- Sided p	Two- Sided p	е	Difference	Lower	Upper	
Hasil	Equal variances assumed	2.171	.147	-14.556	50	<.001	<.001	-45.530	3.128	-51.812	-39.247	
i idoli	Equal variances not assumed			-14.311	43.994	<.001	<.001	-45.530	3.181	-51.942	-39.118	

Pendekatan pembelajaran *Realistic Mathematics Education* berpengaruh positif terhadap kemampuan pemecahan masalah siswa. Besarnya pengaruh pendekatan pembelajaran *Realistic Mathematics Education* terhadap kemampuan pemecahan masalah adalah sebesar $\gamma^2 = \frac{t_0^2}{t_0^2 + db} = \frac{(-14.556)^2}{(-14.556^2 + 50)} = 0,8090$. Hal ini berarti pengaruh pendekatan pembelajaran *Realistic Mathematics Education* terhadap kemampuan pemecahan masalah tergolong pada kategori kecil yaitu memiliki *effect size* sebesar 0,8090. Hal ini berarti semakin besar *effect size*, maka semakin besar juga perbedaan rata-rata nilai yang dihasilkan dari kelas eksperimen dan kelas kontrol.

b. Kecemasan Matematika Siswa

Hasil uji Independent Sample T test dapat dilihat pada baris Equal variances assumed, hal ini dikarenakan varians data dari kedua kelas homogen. Selanjutnya, pada baris t-test for equality means diperoleh harga t=-12.453 dan nilai Sig. (2 tailed) < 0,001 yang berarti nilai tersebut lebih kecil dari taraf signifikansi $\alpha=0.05$ (0,001 < 0,05) atau H_0 ditolak dan H_a diterima. Berdasarkan hal tersebut dapat disimpulkan bahwa rata-rata tingkat kecemasan siswa yang diajarkan dengan menggunakan pendekatan pembelajaran Realistic Mathematics Education lebih rendah dibandingkan siswa yang diajarkan dengan menggunakan pendekatan konvensional. Berikut ini disajikan data hasil perhitungan uji Independent Sample T test.

Tabel 4.22 Hasil Uji *Independent Sample T test* Kecemasan Matematika Siswa

	Independent Samples Test												
		Levene' for Equa Variar	ality of		t-test for Equality of Means								
			F Sig.		F Sig.	Т	df	Signif	cance	Mean Difference	Std. Error Difference	Interva	nfidence al of the rence
						One- Sided p	Two- Sided p			Lower	Upper		
	Equal variances assumed	.710	.404	-12.453	50	<.001	<.001	-18.202	1.462	-21.138	-15.266		
Hasil	Equal variances not assumed			-12.512	49.535	<.001 <.001		-18.202	1.455	-21.125	-15.280		

Pendekatan pembelajaran *Realistic Mathematics Education* berpengaruh positif terhadap kemampuan pemecahan masalah siswa. Besarnya pengaruh pendekatan pembelajaran *Realistic Mathematics Education* terhadap kemampuan pemecahan masalah adalah sebesar $\gamma^2 = \frac{t_0^2}{t_0^2 + db} = \frac{(-12.453)^2}{(-12.453^2 + 50)} = 0,7561$. Hal ini berarti pengaruh pendekatan pembelajaran *Realistic Mathematics Education* terhadap kecemasan matematika tergolong pada kategori kecil yaitu memiliki *effect size* sebesar 0,7561. Hal ini berarti semakin besar *effect size*, maka semakin besar juga perbedaan rata-rata nilai yang dihasilkan dari kelas eksperimen dan kelas kontrol.

4.4. Pembahasan Hasil Penelitian

Penelitian ini bertujuan untuk mengetahui pengaruh penggunaan pendekatan pembelajaran *Realistic Mathematics Education* terhadap kemampuan pemecahan masalah dan kecemasan matematika siswa SMP kelas VIII pada materi SPLDV. Dalam penelitian ini menggunakan dua kelas yaitu kelas eksperimen (menggunakan pembelajaran *Realistic Mathematics Education*) dan kelas kontrol (pendekatan konvensional), untuk dapat melihat hasil kemampuan pemecahan masalah siswa dan tingkat kecemasan matematika siswa antara dua kelompok yang menerima perlakuan berbeda. Peneliti mengevaluasi kondisi awal kemampuan siswa dengan memberikan *pretests* pada kelompok eksperimen dan kelompok kontrol dan memberikan *posttest* setelah dilakukan proses pembelajaran kepada kedua kelompok tersebut.

Kemudian data yang diperoleh dan diolah menggunakan SPSS yang menunjukan adanya perbedaan signifikan antara kelas eksperimen dan kelas kontrol. Analisis data menunjukkan bahwa pendekatan pembelajaran *Realistic Mathematic Education* memiliki dampak positif terhadap hasil belajar siswa. Siswa di kelas eksperimen memperoleh nilai yang lebih tinggi pada tes akhir dibandingkan dengan siswa di kelas kontrol. Hal ini menunjukkan bahwa pendekatan pembelajaran *Realistic Mathematic Education* tidak hanya meningkatkan kemampuan pemecahan masalah, tetapi juga mengurangi tingkat kecemasan siswa terhadap matematika.

Hasil uji deskriptif statistik juga menunjukan bahwa rata-rata nilai kemampuan pemecahan masalah siswa di kelas eksperimen yang menggunakan pendekatan pembelajaran *Realistic Mathematic Education* lebih tinggi dibandingkan dengan kelas kontrol yang menggunakan metode konvensional. Dapat dilihat pada kelas eksperimen mengalami peningkatan rata rata (Mean) dari nilai 38,50 pada pretest menjadi 81,96 pada posttest. Ini menunjukan adanya peningkatan yang signifikan dalam peningkatan kemampuan pemecahan masalah siswa setelah dilakukan pendekatan pembelajaran *Realistic Mathematic Education*. Dalam kelas kontrol juga mengalami peningkatan rata rata nilai dari 22,86 pada

pretest menjadi 36,43 pada posttest, namun peningkatan ini lebih kecil dibandingkan dengan kelas eksperimen.

Sedangkan hasil uji deskriptif statistik menunjukan bahwa rata-rata nilai kecemasan matematika siswa di kelas eksperimen yang menggunakan pendekatan Mathematic pembelajaran Realistic Education lebih rendah dibandingkan dengan kelas kontrol yang menggunakan metode konvensional. Dapat dilihat pada kelas eksperimen mengalami peningkatan rata rata (Mean) dari nilai 54,54 pada pretest menjadi 72,42 pada posttest. Ini menunjukan adanya peningkatan yang signifikan dalam peningkatan kemampuan pemecahan masalah siswa setelah dilakukan pendekatan pembelajaran Realistic Mathematic Education. Dalam kelas kontrol juga mengalami peningkatan rata rata nilai dari 46,36 pada pretest menjadi 54,21 pada posttest, namun peningkatan ini lebih kecil dibandingkan dengan kelas eksperimen.

Untuk hasil uji hipotesis dimana dalam penelitian ini menggunakan uji Independent Sample T test dapat dilihat pada baris t-test for equality means diperoleh harga t = -14.556 dan nilai Sig. (2 tailed) < 0.001 yang berarti nilai tersebut lebih kecil dari taraf signifikansi $\alpha = 0.05$ (0.001 < 0.05) atau H_0 ditolak dan H_a diterima. Berdasarkan hal tersebut dapat disimpulkan bahwa rata-rata kemampuan pemecahan masalah siswa yang diajarkan dengan menggunakan pendekatan pembelajaran Realistic Mathematics Education lebih tinggi dibandingkan siswa yang diajarkan dengan menggunakan pendekatan konvensional. Sedangkan hasil uji Independent Sample T test kecemasan matematika siswa dapat dilihat pada baris t-test for equality means diperoleh harga t = -12.453 dan nilai Sig. (2 tailed) < 0.001 yang berarti nilai tersebut lebih kecil dari taraf signifikansi $\alpha=0.05~(0.001<0.05)$ atau H_0 ditolak dan H_a diterima. Berdasarkan hal tersebut dapat disimpulkan bahwa rata-rata tingkat kecemasan siswa yang diajarkan dengan menggunakan pendekatan pembelajaran Realistic Mathematics Education lebih rendah dibandingkan siswa yang diajarkan dengan menggunakan pendekatan konvensional.

Hasil penelitian di kelas VIII SMP Muhammadiyah 7 Medan mengungkapkan bahwa pendekatan RME berpengaruh secara positif serta signifikan terhadap hasil

belajar kemampuan pemecahan masalah dan dapat mengurangi tingkat kecemasan matematika siswa, daripada penggunaan model pembelajaran konvensional yang umum diterapkan di sekolah. Keunggulan RME terletak pada konteks realistis yang membuat siswa lebih mudah memahami konsep matematika. Aktivitas yang berbasis eksplorasi dan diskusi meningkatkan keterlibatan siswa dalam pembelajaran. Sebaliknya, kelas kontrol yang menggunakan metode konvensional cenderung menunjukkan peningkatan yang lebih rendah dalam kemampuan pemecahan masalah dan mengalami penurunan kecemasan yang tidak terlalu signifikan. Hal ini dikarenakan pendekatan pembelajaran yang lebih berpusat pada guru dan kurang memberikan ruang bagi siswa untuk eksplorasi serta pemahaman mendalam.

Pemberian perlakuan dengan menggunakan pendekatan pembelajaran *Realistic Mathematics Education* (RME) ini membuat siswa lebih aktif selama proses pembelajaran berlangsung serta lebih mampu menguasai materi yang diberikan karena siswa menyampaikannya secara langsung kepada teman-temannya. Selama proses pembelajaran berlangsung dengan menggunakan pendekatan pembelajaran *Realistic Mathematics Education* (RME) ini, siswa berusaha untuk memahami masalah yang relevan dengan kehidupan sehari-hari, kemudian siswa menuliskan apa saja yang diketahui dari soal, siswa melaksanakan perhitungan sesuai dengan strategi, serta membuat kesimpulan bersama-sama sehingga tingkat kesalahan saat mengerjakan soal jauh lebih kecil.

Dengan dikaitkannya materi pembelajaran dengan kehidupan sehari-hari dapat meningkatkan kemampuan pemecahan masalah siswa dan minat siswa untuk belajar. Sejalan dengan teori Gagne bahwa belajar matematika perlu dihubungkan dengan kehidupan nyata sehingga melatih siswa untuk mampu menyelidiki dan memecahkan masalah, belajar mandiri, bersikap positif terhadap matematika (Komala, 2023).

Berdasarkan hasil analisis data penelitian, adanya pengaruh terhadap kecemasan matematika siswa disebabkan karena dalam proses pembelajaran siswa lebih senang, dan lebih tertarik dalam belajar melalui pendekatan pembelajaran *Realistic Mathematics Education* (RME) terutama ketika siswa-siswi berdiskusi

dengan temannya dan mempresentasikan hasil diskusi mereka di depan kelas. Sejalan dengan Saputra (2014) metode untuk mengurangi kecemasan siswa adalah dengan membuat lingkungan pembelajaran matematika dengan senang dan santai, dan membuat siswa berpartisipasi dalam kelompok.

Dalam pembelajaran ini lebih mudah dipahami siswa dikarenakan mengaitkan materi pembelajaran dengan pengalaman sehari-hari siswa dalam konteks nyata. Hal ini sesuai dengan pendapat Komala (2023) bahwa dengan menggunakan pendekatan RME siswa diberikan kesempatan untuk memahami dan menyelesaikan masalah dimana permasalahan tersebut dekat dengan kehidupan sehari-hari siswa sehingga membuat siswa tidak merasa asing dan termotivasi untuk memecahkan masalah tersebut berdasarkan konsep matematika yang sudah dipelajari.

UNIVERSITAS ISLAM NEGERI
SUMATERA UTARA MEDAN