

Vol. 6, No. 3, September 2024 e-ISSN: 2656-4882 p-ISSN: 2656-5935

DOI: 10.51519/journalisi.v6i3.848

Published By DRPM-UBD

Enhancing Automated Vehicle License Plate Recognition with YOLOv8 and EasyOCR

Nurul Salsabila¹, Sriani²

¹Computer Science State Islamic University of North Sumatra, Medan, Indonesia ²Faculty of Science and Technology, State Islamic University of North Sumatra, Medan, Indonesia Email: ¹nurulsalsabila528@gmail.com, ²sriani@uinsu.ac.id

Abstract

This research focuses on the development of an automatic system for vehicle license plate recognition using YOLOv8, EasyOCR, and CNN methods for object classification. The main issue raised is the need for an accurate and efficient system for recognizing vehicle license plates in real-time in dynamic environments, especially in urban areas with high traffic levels. The method used in this study involves resizing the input image to 416x416 pixels to standardize the data, analyzing the YOLO architecture that divides the image into a 7x7 grid, and using the Convolutional Neural Network (CNN) algorithm for feature extraction and object classification. Object detection uses the YOLOv8 method which is tasked with recognizing license plates using a previously trained YOLO (pretrained model) model then implemented and tested using video with 4k quality to ensure its effectiveness in detecting vehicle license plate objects, followed by the Optical Character Recognition (OCR) process with the EasyOCR method to read text on license plates and tested to ensure its effectiveness in reading characters on license plates vehicle number. The purpose of this research is to develop a system that can improve accuracy and efficiency in vehicle license plate recognition. The results show that the accuracy, precision, recall and F1-Score for object detection reach 100% and the average percentage of detected text conformity is 74.66%, which shows that this system is reliable in real applications and contributes to the development of automatic license plate recognition technology.

Keywords: YOLOv8, EasyOCR, Vehicle License Plate Recognition, Convolutional Neural Network, Object Detection

1. INTRODUCTION

In an era filled with technological developments, the mobility of motor vehicles is becoming more and more diverse. Vehicle license plate recognition is an important aspect of traffic surveillance and safety, especially in congested urban environments. Vehicle identification through license plates allows for effective traffic monitoring, tracking of vehicles involved in criminal activities, and better law enforcement. Therefore, the development of an automatic vehicle license plate

1577

This work is licensed under a Creative Commons Attribution 4.0 International License.

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935	http://journal-isi.org/index.php/isi	e-ISSN: 2656-4882
--------------------------	--------------------------------------	--------------------------

recognition system is important as a solution to improve efficiency and accuracy in the vehicle identification process.

License plate recognition involves the process of reading characters from the license plate image taken by the system automatically. This technology has been an active subject of research in the field of computer vision and artificial intelligence. According to [1] Vehicle license plate recognition is useful for recognizing the identity of the vehicle. Vehicle plate detection is a technology to identify vehicle license plates with license plate data that has been obtained previously so that it can find data that will later be processed in the database [2]. Through this automation approach, the process of recording to [3] The process of vehicle plate recognition as much as possible must be able to be implemented in complex image conditions with various angles of image capture.

In recent years, there have been recent developments in vehicle license plate recognition technology, especially in the use of more sophisticated and efficient deep learning models. One of the most well-known models is YOLO (You Only Look Once), which has undergone several iterations of performance improvements, including YOLOv4 and YOLOv5. YOLOv8 is the latest iteration of the YOLO model that promises a better level of accuracy and speed in the detection of objects, including vehicle license plates. Meanwhile, EasyOCR is an easy-to-use and reliable optical character recognition library. The combination of these technologies can result in fast, accurate, and reliable systems, even in diverse environmental conditions [4]. Therefore, the researcher is interested in exploring and implementing an automatic vehicle license plate recognition system using YOLOv8 and EasyOCR as part of the research to see how accurate YOLOv8 and EasyOCR are in recognizing an object and number character on a vehicle plate.

Vehicle License Plate Recognition Technique Using the YOLOv5 algorithm has also been applied to previous research, namely research by 3. [5] In this study, it is proven that the accuracy of vehicle license plate detection with YOLOv5 is 100%, the result of the accuracy of letter and number recognition on vehicle license plates is 95.83%. The accuracy of vehicle license plate recognition on opening and closing door bars with testing from 5 classes of residential license plates is 100% and the average computing time required to run the system is 0.287344 seconds. [6] His research showed an mAP score of 84% and an F1-Score of 80%. In the test based on the distance between the object and the camera, the farthest object detection can be achieved as far as 3 meters with a low confidence value of below 60% but at a distance of 2 meters the confidence value can reach above 80%.

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Based on previous research, this study was made with differences in terms of the algorithm to be used and the library that will be used in recognizing characters on vehicle plates, where the algorithm used from the above research is YOLOv5 and the Tesseract OCR library while in this study using the YOLOv8 algorithm and using the EasyOCR library, then it will be analyzed how the level of accuracy obtained by using the YOLOv8 algorithm with EasyOCR will be analyzed. Previous license plate recognition methods often faced problems such as inaccuracy in dynamic environmental conditions, diverse camera angles, and poor lighting. YOLOv8 [7], the latest version of the YOLO model, improves the speed and accuracy of object detection. Nonetheless, EasyOCR offers reliable character recognition capabilities in difficult lighting conditions. The goal of this research is to find a solution for automatic license plate recognition that can be used to monitor traffic in real-time.

2. METHODS

This study uses a quantitative research methodology. The following is a diagram of the stages of the research as shown in Figure 1.

Figure 1. Research Stages

Figure 1 shows the stages of research carried out from planning to the testing stage. The research uses the YOLO (You Only Look Once) algorithm which is one of the model variants of the Convolutional Neural Network (CNN) method. A convolutional neural network (CNN) is an artificial neural network (JST) in which neurons in its layers are divided into three dimensions [8].

YOLO is a new approach in object detection systems designed for real-time data processing. This method uses a single neural network to predict bounding boxes and class probabilities directly in images/frames in a single process [4]. YOLOv8 (You Only Look Once version 8) is an object detection model popular in the field of image processing and computer vision. This model is a development of a series of previous YOLO models. YOLOv8 has the advantage of real-time object detection with a high level of accuracy [9].

The EasyOCR model was chosen as a tool to read labels on cardboard [10]. According to [11]. To calculate the average percentage of character recognition accuracy from two-character recognition results in a video. According to [12] Confusion matrix is a tool that is often used in data mining to measure the level of accuracy.

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935	http://journal-isi.org/index.php/isi	e-ISSN: 2656-4882
--------------------------	--------------------------------------	--------------------------

2.1. Planning

This study applies YOLOv8 algorithm to detect vehicle plates and EasyOCR in text recognition on vehicle plates [13]. There are several steps that will be carried out in this study, including data collection, data analysis, system design, and detection testing.

2.2. Data Collection

2.2.1. Pretrained Model

There are two YOLOv8 models initialized. The first yolov8n.pt to detect common objects (in this case, vehicles) and the second license_plate_detector.pt is more devoted to detecting vehicle license plates. Pretrained models or pre-trained models, namely yolov8n, which can be obtained freely on the ultralytics website and license_plate_detector.pt which can be obtained on the recognition-rxg4e/ https://universe.roboflow.com/roboflow-universe-projects/license-plate. This trained model is the basis for researchers to test vehicle recognition models to achieve the research goals that have been set.

2.2.2. Library Research

Library research is the process of searching for information carried out in libraries or through online information sources such as academic databases, scientific journals, and digital libraries [14]. In this study, literature studies were carried out by summarizing the contents of accredited journals, books in the library, and theses and previous research.

2.3. Data Analysis

The data analysis process, at this stage, the steps carried out in detecting objects will be explained which can be seen in Figure 2.

Figure 2. Yolo Algorithm Flowchart

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935	http://journal-isi.org/index.php/isi	e-ISSN: 2656-4882
--------------------------	--------------------------------------	-------------------

Image data can be input in the form of both photos and videos, with videos being either real-time or recorded. The YOLO (You Only Look Once) process begins by resizing the input image data to 416 x 416 pixels. This resized image then undergoes feature extraction and object classification through a Convolutional Neural Network (CNN).

The process involves several steps: First, convolution operations are applied to the image using a 3x3 kernel to extract features. Following each convolution operation, the ReLU (Rectified Linear Unit) function is used to introduce non-linearity. Next, max pooling is performed as a downsampling process, which identifies the maximum value from the pixel values obtained after the ReLU operation. Finally, the Fully Connected Layer functions similarly to a standard neural network by generating class scores from the activations, which are then used for classification.

2.4 System Planning

Implementing the YOLOv8 algorithm for vehicle license plate recognition is one of the goals of the design of this research system. This license plate detection system starts by receiving a video of the vehicle and processing it using the YOLOv8 model to detect the vehicle and its license plate. Once identified, the license plate is labeled on the appropriate vehicle. The system then identifies the car. If that's true, thresholding is applied, and the video frame data is converted to grayscale format. Once the detection results are saved in a CSV file, the video is re-analyzed by reading the CSV file and selecting the license plate with the highest score. The system draws a bounding box, labels the license plate, and saves the result in a video. The labeled video output is generated as the result of the vehicle license plate detection process.

Figure 3. Flowchart of vehicle Plate Detection system

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

2.5 Testing

The test was carried out by taking 10 video data taken with 4k resolution at 30 fps and 4k at 60 fps using the iPhone 10 XR series mobile phone camera. Next, it will be tested for vehicle plate object detection using YOLO and text extraction using EasyOCR. This test analyzes the performance of the system under various daylight conditions. The results will be compared to the expected accuracy standards to assess the effectiveness of the system.

3. RESULTS AND DISCUSSION

The data analysis process involves several important stages: resizing the input image to 416x416 pixels to standardize the data, analyzing the YOLO architecture that divides the image into a 7x7 grid, and using the Convolutional Neural Network (CNN) method for feature extraction and object classification. The pre-trained YOLO model is then implemented and tested to ensure its effectiveness in detecting vehicle license plate objects. The Detection Process Analysis will further explain the process of detecting objects that go through various stages so as to get the final result of a detected object. The following are the stages of detection using the YOLO Algorithm.

3.1 Resize Image

The first step before processing the image data is to adjust the input data to the YOLO architecture configuration, namely by resizing the input data. Resize this is also important to standardize the size of various input data that has a variation in image size.

Figure 4. Original Image Image

Figure 4 shows the original image with a resolution of $1920 \ge 1080$ pixels. Before being processed by the network, the image will be ressized to 416 x 416 pixels, as seen in Figure 5.

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935

http://journal-isi.org/index.php/isi

e-ISSN: 2656-4882

Figure 5. Image Image 416x416

The input data is in the form of (416, 416, 3) or an image measuring 416 x 416 with 3 channels, after going through the resizing process, will be divided into 7 x 7 squares as shown in Figure 4.3. These squares are called grid cells. Each box is responsible for predicting whether there is an object in it or not. If there is, the box is given a value of 1, and if not, it is given a value of 0. A box with a value of 1 will result in a Bounding Box. Each cell consists of 5 bounding boxes with 7 components in each box (bx, by, bw, bh, confidence, pc0, pc1). Table 4.1 will show an illustration of each grid cell on the output vector.

Figure 6. Image Imaging With 7x7 Grid

Table 1. Illustration of the contents of each grid cell							
	Bx	by	Bw	brassiere	confidence	PC0	PC1
Bbox1							
Bbox2							
Bbox3							
Bbox4							
Bbox5							

3.2 YOLO Architecture Analysis

YOLO uses a reduction factor of 32 to downsample the input image. Images with a size of (416, 416, 3) or 416 x 416 pixels with 3 channels, will experience a decrease

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935	http://journal-isi.org/index.php/isi	e-ISSN: 2656-4882
--------------------------	--------------------------------------	-------------------

in resolution during the convolutional network process resulting in an output with a resolution of 13 x 13 (416 divided by 32). This output will form a vector with size (13, 13, 35), where 13 x 13 is the final grid, and 35 is derived from the formula Bx(5+C). Here, B is the number of bounding boxes, which is 5, and C is the number of classes, which is 2 (cars and plates). The YOLO architecture used in this study is shown in more detail in Table 2. This architecture shows the summary during training according to the configuration found in Appendix A.1, with F as the filter kernel size, P as the padding, and S as the stride.

	Input	Operation	F	Р	S
1	(416, 416, 3)	Conv with batch norm and leaky	(3,3)	1	1
		ReLU			
2	(416, 416, 16)	Max Pooling	(2,2)	0	2
3	(208, 208, 16)	Conv with batch norm and leaky	(3,3)	1	1
		ReLU			
4	(208, 208, 32)	Max Pooling	(2,2)	0	2
5	(104, 104, 32)	Conv with batch norm and leaky	(3,3)	1	1
		ReLU			
6	(104, 104, 64)	Max Pooling	(2,2)	0	2
7	(52, 52, 64)	Conv with batch norm and leaky	(3,3)	1	1
		ReLU			
8	(52, 52, 128)	Max Pooling	(2,2)	0	2
9	(26, 26, 128)	Conv with batch norm and leaky	(3,3)	1	1
		ReLU			
10	(26, 26, 256)	Max Pooling	(2,2)	1	1
11	(13, 13, 256)	Conv with batch norm and leaky	(3,3)	1	1
		ReLU			
12	(13, 13, 512)	Max Pooling	(2,2)	0	1
13	(13, 13, 512)	Conv with batch norm and leaky	(3,3)	1	1
		ReLU			
14	(13, 13, 1024)	Conv with batch norm and leaky	(3,3)	1	1
	, ,	ReLU	. ,		
15	(13, 13, 1024)	Conv with batch norm and leaky	(3,3)	0	1
		ReLU			
12 13 14 15	 (13, 13, 512) (13, 13, 512) (13, 13, 1024) (13, 13, 1024) 	Max Pooling Conv with batch norm and leaky ReLU Conv with batch norm and leaky ReLU Conv with batch norm and leaky ReLU	(2,2) (3,3) (3,3) (3,3)	0 1 1 0	1 1 1

Table 2. YOLO Architecture

In the first layer, a convolution operation is carried out with a 3x3 filter kernel, padding 1, and stride 1 on a 416x416 input. On the third layer onwards, the output is displayed according to Table 1 above. In the last layer, there is a difference, where the previous one is through convolution with ReLU activation, while the last layer uses convolution with linear activation. This last layer is in charge of predicting class probabilities and bounding boxes.

The class probability is obtained from the value of the confidence box score, which is a component of the bounding box as shown in Table 2. The confidence box will only have a value if the bounding box detects the presence of an object

Journal of Information Systems and Informatics Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935	http://journal-isi.org/index.php/isi	e-ISSN: 2656-4882
p 1001 (. 2000 0700	http://journalishorg/index.php/isi	0 1001 (1 2000 1002

in it. The final value is related to the IoU (Intersection over Union) of the bounding box. IoU is the comparison between the size of the bounding box and the ground truth obtained during the training period for each class, as shown in equation (3). For manual calculations, we will next try it in Figure 4.3, which has been resized and divided into a grid of 7×7 cells. It is known that the coordinate points (x, y) in the form of RGB pixels that indicate the existence of vehicle license plate objects are illustrated as follows:

RGB point (x,y) = (153, 100) Width (w) = (51) Height (h) = (50)

A piece of the image showing the coordinate points (153,100) can be seen in Figure 7.

Figure 7. Plate Object

The bounding box search process from Figure 8 which has been divided into a grid of 7 x 7 sections is carried out. Figure 8 is an illustrative example of the bounding box search process.

Figure 8. Bounding Box Search Illustration

In Figure 8, the bounding box search process shows that each grid cell is responsible for searching using a different-sized anchor box. The rule in the anchor box search is that if the anchor box is outside the boundary, then it doesn't count.

RGB point (x,y) = (152, 100)Width (w) = (51)Height (h) = (51)

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

The result of the image cut with the bounding box at the coordinates (152, 100) can be seen in Figure 9.

Figure 9. Objects Captured by Bounding Box

The calculated bounding box is the yellow box in Figure 9, and is then used for the IOU calculation, as shown in Figure 10.

Figure 10. IoU Predictions

Since the value obtained is greater than 0.2, the Bounding box data can be used with coordinate points:

RGB point (x,y) = (152,100)Width (w) = (51)Height (h) = (51)

The data Bounding Box obtained will continue to be used until it reaches the Fully Connected Layer network. In addition, a value of 0.48 will be used as a box confidence score value according to the equation, where a value of 0.48 is also called confidence in the bounding box. As mentioned by Joseph Redmon in his paper, the final value of the prediction (class confidence score) is the result of the multiplication of the box confidence score with the conditional probability of the class. The conditional probability values for each class (pc0, pc1) indicate the

Journal of Information Systems and Informatics Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

likelihood that the objects in the bounding box belong to the plate class. This value ranges from 0 to 1, with 1 indicating that the box contains an object from that class, and 0 indicating the absence of an object from that class in the box. In the bounding box example, the conditional probability for the class "plate" is 1, so pc0 = 1. So, the class confidence score will be calculated as follows:

Pr(ClassPlat) = Pc0 * box confidence score = 1 * 0.48 = 0.48

Figure 11. Final Illustration Results of Detected Objects

3.3 CNN method process

To apply the CNN method to the YOLOv8 algorithm with an 8x8 input image, we will next discuss a step-by-step manual calculation that includes convolution, ReLU, and Max Pooling operations. Here is the sequence of the process:

a) Convolution

Convolution is the initial stage of image extraction performed on the YOLO network after the process of resize and IOU prediction search. After obtaining the results from the convolution, the next step in processing on Convolutional Neural Networks (CNNs) is to apply the ReLU (Rectified Linear Unit) activation function and then perform max pooling to reduce the dimensions of the resulting feature map.

b) Rectified Linear Unit (ReLu)

The ReLU (Rectified Linear Unit) function is an activation function that replaces all negative values in the matrix with zero values, while the positive values remain unchanged.

c) Max Pooling

Max pooling is a technique to reduce the dimensional size of a feature map by maintaining the maximum value in each small section (generally 2x2) of the matrix. Max pooling is done by taking the maximum value of each 2x2 submatrix.

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935	http://journal-isi.org/index.php/isi	e-ISSN: 2656-4882
--------------------------	--------------------------------------	-------------------

d) Fully Connected Layer
 First, it is necessary to flatten the 2D feature map into a 1D vector to be input into the fully connected layer. This vector will have a length of 36 (because 6x6 = 36 elements).

3.4 Implementation of the Pretrained Model

Object detection using YOLOv8 (You Only Look Once version 8) involves several stages from data preparation to generating detection output.

3.4.1 System Testing

Tests on video data were carried out in daylight conditions using a mobile phone camera to measure the performance of the model that had been made. In this study, 10 video data were used to evaluate the model's performance against character recognition. The trial was carried out on 10 video data which will later be used as frames with the number of frames.

Video	Number of Frames
Video 1	430 Frame
BK17A20 BK17A2	Determine the second

Table 2. Specification of Video Frame Output 1

Figure 13. Video Output 1 Car 3

Character recognition accuracy is obtained on the test_interpolate_1.csv file as shown in Figure 14 and the system will automatically read the highest accuracy on

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

the test_interpolate_1.csv file and then it will be displayed on the video output 1. The overall test results for video output data 1 in daytime conditions can be seen in Table 3.

85					test,	interpolated_1	1 - Excel (Prod	uct Activation Faile			Nurul salsa	aa 🖂		0	×
File	Beranda	Sisipkan Tata L	itak Halaman 🛛	Rumus Data	Peninjauan	Tampilan	Bantuan	🔉 Beri tahu yan	g ingin Anda lakul						
Ambil Dat Eksternal	ta Kueri Baru * D Dapatka	Perlihatkan Kueri Dari Tabel Sumber Terbaru n & Transformasi	Refresh Semua ~ Did Koneka	oneksi operti lit Tautan	Kueri & esh aa – Di Tautan I Kueri & Konek	Koneksi i Ruku Kerja ai	입↓ <mark>값</mark> ? ≩↓ ^{Urutkan}	Filter	an Ulang Teks I Lanjut Kolor	ke m 🎽 📲	Analisis Bagaimana-Jika Prakin	Lembar s * Prakiraar	Kerangka		^
18	• 1	X 🗸 fr													¥
															н 🗖
1 frame	e nmr 🗐 d	ar id 💌 car bbo	x		license_plate	bbox		* license pl	ate bbox score	e 💌 licen	se_number	* licens	e number so	ore -	
2	153	101 -24,5167	732295238626 9	10.61930009209	4.3236694335	9375 1387.5	546875 254.79	4342 0.5053192	973136902	8074	20V	0.165	43310964725	524	- 11
3	153	86 2118.64	0923917834 708	.851393778240	2374.25 1432	4616699218	375 2612.5100	00976 0.4951341	74823761	BK16	15%E	0.195	97820327067	741	
4	154	101 -26.7895	4736000071 91	7.742228824054	5.2907638549	80469 1382	.85803222656	525 270.6645455	360412598	BK17	020	0.263	79458503884	634	
5	154	86 2101.34	3163632323 709	.324984936682	2358.2368661	385995 143	9.5621970843	78 255		0		0		0	
6	155	86 2084.04	54033468127 70	9.79857609512	2342.2237322	77199 1446	66272424768	852 25		0		0		0	
7	155	101 -22.2431	6495292311 92	0.491203531888	29.317279815	673828 137	7.6407470703	3125 3		0		0		0	
8	156	101 -17.6967	782545845508 9	23.24017823972	53.343795776	36719 1372	.42346191406	525 370.6219753	02696228	BK05	120Y	0.426	32762844314	61	
9	156	86 2066.74	7643061302 710	272167253568	2326.2105984	15799 1453	.76325141059	903 25		0		0		0	
10	157	86 2049.44	98827757916 71	0.74575841201	2310.1974649	543983 146	0.8637785734	1954.2		0		0		0	_
11	157	101 -21.3570	006379073653 9	18.50571579514	96.980930328	336914 1373	.52996826171	L88 4C		0		0		0	
12	158	101 -25.0172	230212301797 9	13.77125335057	140.61806488	803711 1374	.63647460933	75 44C		0		0		0	
13	158	86 2032.15	21224902808 71	1.21934957045	2294.1843300	929977 146	7.9643057364	1005 2		0		0		0	_
14	159	101 -28.6774	15404552994 90	9.036790905995	184.25519941	237305 137	5.7429809570	0312.4		0		0		0	_
15	159	86 2014.85	43622047703 71	1.69294072889	2278.1711968	31597 1475	.06483289930	057 25		0		0		0	_
16	160	101 -32.3376	577878758086 9	04.30232846143	227.89233398	\$4375 1376.8	349487304687	75 5110.5074142	813682556	BK17	A20	0.547	82812634079	97	_
17	160	86 1997.55	66019192597 71	2.16653188733	2262.1580629	701966 148	2.1653600622	2105 2		0		0		0	_
18	161	101 -25.8745	6797806783 90	4.218890941864	270.90530395	50781 1377	.83935546875	5 540. 0.6137860	417366028	BK17	A20	0.557	59225819670	39	_
19	161	86 1980.25	88416337492 71	2.64012304578	2246.1449291	087965 148	9.2658872251	1156.2		0		0		0	_
20	162	86 1962.96	10813482386 71	3.11371420422	2230.1317952	47396 1496	.36641438803	208 24		0		0		0	
21	162	101 -1.15418	888019402222 9	10.04210386917	308.47917175	29297 1378	.42590332031	125 57		0		0		0	
- + - F	test_inte	rpolated_1	•					:	4						Þ
Siap (5	Aksesibilitas: Tie														

Figure 14. File Test_Interpolated_1.csv

Video 1	Original plates	Plate detected	Character Recognition
Car 1	BK1645UE	BK16ASJ	70%
Car 2	BK1702OY	BK17A20	55%
Car 3	BK1562AAR	EX15S2A	31%

Table 3.	Output	video	Test	Result	1
----------	--------	-------	------	--------	---

Furthermore, for the 2nd video, it will be used as frames with the number of frames per video. For output video 2, you can see in table 4 An example of the test results on output video 2 can be seen in Figure 15.

Table 4. Video Frame Output 2 Specifications						
Video	Number of Frames					
Video 2	278 Frame					

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935

http://journal-isi.org/index.php/isi

e-ISSN: 2656-4882

Figure 15. Video Output 2 Car 1

Character recognition accuracy is obtained in the test_interpolate_2.csv file as shown in Figure 16 and the system will automatically read the highest accuracy in the test_interpolate_2.csv file and then it will be displayed in the video output 2. The overall test results for video output 2 data in daylight conditions can be seen in Table 5.

₽ 5-	$C^{h} \stackrel{_{\rm v}}{\longrightarrow} \bullet$				test_interp	olated_2 · Excel	(Product Ac	tivation Failed)	2	6	Nurul salsat	a 🔲	⊞ –	0	×
File B	leranda Sisipka	n Tata Leta	k Halaman Rumus	Data	Peninjauan Tar	ipilan Bantua		Seri tahu yang i	ingin Anda lakuk						
Ambil Data Eksternal *	Kueri Baru - Costanto Dapatkan & Tran	ttkan Kueri abel er Terbaru aformasi	Refresh Semua - Koneksi Koneksi	Refresh Serrua	Kueri & Kone Properti Datan Buku) Kueri & Koneksi	ksi ĝi 🔏 Gorja 🕺	kan Filter	Tingkat La	Ulang Injut Kolon	H	Analisis Bagaimana-Jika Prakira	Lembar Yrakiraan	Kerangka V		^
111	• 1 ×	√ fx													¥
															HA
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 10 10 10 10 10 10 10 10 10 10	10 27 38 27 2 102 47 10 103 47 9 104 47 9 105 47 9 106 47 8 107 47 8 108 47 7 109 47 7 110 47 7 111 47 6 112 47 6 113 47 6 114 47 5 115 47 5 116 47 4 118 47 3 119 47 3	18, 744472227 463,09938549 351,45480679 1910,72169357 99,251467449 88,516354335 39,251467449 88,516354335 37,76124122 37,046128107 66,311014993 35,575001879 44,80788765 52,655449422 21,90036308 93,30766353 52,655449422 21,90036308 93,30766355 54,655476279 34,859196564 51,858816200	621 607.1118662-34706 6221 998.2038872422 55.588.855.0955674-6007 4728 851.3892955-6003 4728 847 4851.389295-6003 4728 474 851.389275-600 53.317 460.27286551 1690 53.317 460.27286551 1690 53.214 623 6515575558 53.24 623 6515975558 53.24 623 651597558 53.24 623 6515975 53.24 623 6515975 53.24 623 651597 53.24 623 651597 53.24 623 651597 53.24 623 651597 53.24 623 65175 53.24 623 65175 54.24 623 65175 55.24 623 65175 55.24 623 65175 55.24 65175 55.2	2588.54966 3491.64578 3797.626.842 8 2612.1276 9 2597.4125 9 2597.4125 9 2597.4125 9 2597.4125 9 2587.9125 553.367105 1 2538.5515 3 2509.1216 4 2494.4065 5 2475.6913 5 2464.9763 6 2455.0450 6 2455.0450 4 2419.4638 8 2403.3817 7 2387.2999 5 2371.2179	77 1154.297/607421 8 1364.887/66718 8 1364.887/66718 9 1325.70315317 4 1286.71299315 9 1247.65567251 9 1248.58567251 9 1248.585635111 8 1169.541029710 1 1091.4470.88900 6 1052.36906550 4 1013.31174410 6 1052.36906550 4 1013.31174420 9 295.597/98978 2 857.0824584960 2 801.651253427 1 456.21397798978 2 857.0824584960 2 801.51253427 1 456.21397798978 2 635.5567682226 2 634.5576788226	875 1006, 13647) 1374 001051,166 75 1599,401564 7075 1599,401564 7075 1640,37199 7788 1616,6684 00561 1620,9847 7382 1616,6684 00561 1620,9847 7382 1616,6684 00561 1620,9847 13827 6163,9333 5055 1652,19829 938 1655,51452 775 1674,415227 715 1674,41527 715 1674,4152	609375 143 1875 2876, 53125 1688 22926682 1 01322114 97917549 1 5811298 15 5811298 15 5811298 15 581298 15 50090144 1 445576 13 588101 13 5276443 12 5276443 12 5276443 12 5276643 12 920072 118 729588 11 0528413 15 578726 103 578726 103	8.567026401 0 218261718750 0 4633789062 0 551.5350003 651.63506218 581.9782433 471.4986478 512.3214862 477.4931077 42.64472919 33.3029721 8.179593599 3.351215069 8.52283053 33.604458000 5.887864332 86.598456749 8.81270658	2.298749412066 556356331845 8.703324079513 9.705187367439	5741 9229 5498 27	8138095 81390 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 841900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.8 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1810516476654 39316256484981 3931162229336999		
22	120 47 3 121 47 2	79.348436235 56.838056220	3917 784.058374726096 69156 779.48576297781	1 2355.1354 88 2339.053	12 578.9264831542 13 523.2952880859	969 1702.766254 375 1712.21659	1316106 98 6844951 94	0.274676983			0	0		0	- 1
24 25 .76	122 47 2 123 47 1 124 47 1 test interpolat	24.327676205 81.817296191 99.306916126 ed 2	99134 774.91315122954 29118 770.34053948126 59102 265.26792723298	15 2322.971 43 2306.885 69 2790.803	2 467.6640930175 11 412.0328979492 10 356.4017028808	781 1721.66694 1875 1731.1172 594 1740.56763	237379985 079026448 343149793	1.371380145 42.46808330 5647864708	4		0	0	_	0	
Siap (Syna	nechiltac Tidak Terre	44										155 PT			34%

Figure 16. File Test_Interpolated_2.csv

Table 5.	Output	video	Test	Results	2
----------	--------	-------	------	---------	---

Video 2	Original plates	Plate detected	Character Recognition
Car 1	BK1869SA	BK18G9S	86%

Furthermore, for the 3rd video, it will be used as frames with the number of frames per video. For output video 3 can be seen in table 6, examples of test results on output video 3 can be seen in Figure 17.

Vol. 6, No. 3, September 2024										
p-ISSN: 2656-5935	http://journal-isi.org/index.php/isi	e-ISSN: 2656-4882								
Table 6. Specification of Video Frame Output 3										
Video	Number of Fra	ames								
Video 3 Frame										

Figure 17. Video Output 3 Car 1

The accuracy of character recognition is obtained on the test_interpolate_3.csv file as shown in Figure 18 and the system will automatically read the highest accuracy on the test_interpolate_3.csv file and then it will be displayed on the video output 3. The overall test results for video output 3 data in daylight conditions can be seen in Table 7.

8.5	5 - C - F				test_interpolate	ed_3 · Excel (Pri	aduct Activation Failed)	2 2 6	Nord	salsabila 🛄	- 10	0	×
File	Beranda Sisipka	in Tata Li	itak Halaman 🛛 Rum	is Data R	eninjauan Tampilar	n Bantuan	🛇 Beri tahu yang	ingin Anda lakukan					
Ambil Dat Eksternal	ta Kueri Dari 1 Baru ~ 🕞 Sumb Dapatkan & Tra	atkan Kueri label ser Terbaru nsformasi	Refresh Semua + Dictit Tar Koneksi	a B Refresh Semua ~	Kueri & Koneksi Properti Rutan Buku Kerja Iseta Koneksi	21 X 2 X Urutkan	Filter	Ulang anjut Kolom Alat De	Anal Call Bagaiman	?	r Kerangka		^
M8	1 ×	√ fx											~
													н 🗖
1 fram	e_nmr 💽 car_id	* car_bbo	IK		Iicense_plate_b	box	 license_ 	plate_bbox_score	Icense_numb	er 🕐 license	number_score	*	
2	143	3 442.924	6935342908 22.8768	04664174188 2	874994.190368652	3438 1490.991	333007812:0.63407	95755386353	8L869OW	0.43382	73053766211		_
3	144	3 421.483	7460197649 14.7925	94815395887 2	869976.632843017	5781 1496.930	358886718		0	0		0	- 1
4	145	3 400.042	79850523903 6.7083	849666175865	286959.075317382	8125 1502.869	384765625 0.60055	5956363678	BL869GN	0.10419	33447729325		_
5	146	3 382.083	77321472426 5.1223	56435298229 2	864939.168090820	3125 1503.144	195556640		0	0		0	
6	147	3 364.124	7479242095 3.53632	7903978872 28	66. 919.260864257	8125 1503.419	006347656		0	0		0	
7	148	3 346.165	7226336947 1.95029	9372659515 28	67.:899.353637695	3125 1503.693	817138671		0	0		0	- 1
-8	149	3 328.206	69734317994 0.364;	7084134015786	5 28879.446411132	8125 1503.968	627929687:0.54670	37558555603	8L869GN	0.18222	619065447884		
9	150	3 305.695	53599294943 4.393	15847186374 2	871854.168731689	4531 1505.458	068847656:		0	0		0	_
10	151	3 283.184	3746427189 8.42338	0853032591 28	74.1828.891052246	0938 1506.947	509765625 0.64803	32016944885	BL869ON	0.11826	101167232027		_
11	152	3 252.207	93319063446 7.6019	18095999457 2	860811.987040201	8229 1509.032	104492187		0	0		0	_
12	153	3 221.231	49173855003 6.7790	75338966324 2	845795.083028157	5521 1511.116	69921875 1		0	0		0	_
13	154	3 190.255	05028646558 5.9578	32581933189 2	830 778.179016113	2812 1513.201	293945312 0.60246	02055549622	8L869OW	0.22507	450219934758		_
14	155	3 174.665	1094058002 4.72325	9818085262 28	26.1759.390563964	8438 1514.181	15234375 10.63393	36633682251	8186901	0.16264	577852973405		_
15	156	3 169.807	26890373694 -1.281	9478920368965	28 737.140747070	3125 1515.425	903320312 0.49530	836939811707	8L869GW	0.50006	20876838473		_
16	157	3 167.194	75618765182 -1.130	5803538211876	28 715.913330078	125 1512.3363	037109375 0.64057	43956565857	BL869GI	0.10470	300896014366		
17	158	3 159.474	62302487122 -0.933	9212361298596	28 697.393486716	5306 1513.271	040482954		0	0		0	
18	159	3 151.754	48986209062 -0.737	2621184385315	28 678.873643354	9361 1514.205	777254971		0	0		0	
19	160	3 144.034	35669931002 -0.540	6030007472034	28 660.353799993	3416 1515.140	514026988		0	0		0	
20	161	3 136.314	22353652943 -0.343	9438830558753	28 641.833956631	7471 1516.075	250799005		0	0		0	
21	162	3 128.594	09037374883 -0.147	2847653645472	7 2 623.314113270	1527 1517.009	987571022		0	0		0	
4 4	test interpola	ted 3	(*)					4					D
din A									1000				

Figure 18. File Test_Interpolated_3.csv

Table 7. Output video Test Results 3								
Video 2	Original plates	Plate detected	Character Recognition					
Car 1	BK1150VKY	GI150VK	45%					

Journa	l of Information Systems and Inf Vol. 6, No. 3, September 2024	formatics
p-ISSN: 2656-5935	http://journal-isi.org/index.php/isi	e-ISSN: 2656-4882

This step is done until the output video is tested 10 or 10 times to detect objects so that it can be calculated with equations 5 and 6 to find the average percentage of character recognition accuracy for 1 video. The results can be seen in table 8 as below:

	Table 8. Character Extraction Results Detected	
Video data	Average percentage of detected characters	
Video 1	52%	
Video 2	85,33%	
Video 3	45%	
Video 4	64%	
Video 5	71.75%	
Video 6	82.6%	
Video 7	89%	
Video 8	60%	
Video 9	98%	
Video 10	99%	
Average	746.68%	

Based on Table 8, it can be seen that the minimum percentage of detection of each category is 90%, it can be seen that the average result of the percentage of detected text conformity is 74.66%. Before we get into the discussion of object calculation, it is important to understand some of the evaluation metrics that are often used in object detection, such as Accuracy, Precision, and Recall. 100% Precision means 0 False Positives (no wrong predictions), and 100% Recall means 0 False Negatives (all basic truth boxes are correctly predicted). Here are the general steps to calculate the above metrics from the results of the car license plate detection video.

- True Positives (TP): The correct number of detections (the license plate 1. is detected correctly and is in the proper bounding box).
- False Positives (FP): Number of false detections (the model detects 2. something that is not a car plate as a car plate).
- False Negatives (FN): The number of car plates that are not detected by 3. the model.
- True Negatives (TN): The number of cases in which the model correctly 4. did not detect an object that did not exist (for example, an area without a car plate).

From the confusion matrix value obtained from the classification process which can be used to determine the value of precision, recall, and f1-score as well as to find out the level of accuracy that the system has been built. The results of 100% precision, 100% recall, 100% F-1 Score and 100% accuracy in object recognition were obtained, however, the accuracy of text character recognition only reached 74.66%. This is likely due to factors such as lighting conditions, camera viewing angles, and object movement. Compared to other methods that use the YOLOv5

Journal of Information Systems and Informatics Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 h	http://journal-isi.org/index.php/isi	e-ISSN: 2656-4882
----------------------------	--------------------------------------	--------------------------

model and Tesseract OCR, this model is faster and more accurate in detecting vehicle license plates, although character recognition still needs further improvement. The implementation of this system is relevant for law enforcement, traffic monitoring, and toll automatic systems.

Detected	Carfilanas	Madalaaa	Acumulative				
Detected	Conndence	Matches	ТР	ΤN	FP	FN	
BK 1913 (JV	0.76	ТР	1	0	0	0	
EK 1352 AH	0.73	ТР	2	0	0	0	
EK 1962 ADD	0.72	ТР	3	0	0	0	
BL 1597 RB	0.72	ТР	4	0	0	0	
SX 10.72-00	0.71	ТР	5	0	0	0	

Table 9. Evaluation of Plate Objects

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935 http://journal-isi.org/index.php/isi e-ISSN: 2656-4882

Detected	Confidence	Matches	Acumulative					
			TP	TN	FP	FN		
THE OFFICE AS	0.69	TP	6	0	0	0		
BK 7559107	0.69	ΤÞ		0	0	0		

3.5 Discussion

The data analysis for vehicle license plate detection using the YOLO algorithm involved several key stages, each contributing to the system's overall performance in detecting and recognizing license plates from video footage. The process begins with resizing the input image to 416x416 pixels to standardize the input data for the YOLO architecture, which divides the image into a 7x7 grid for object detection. The Convolutional Neural Network (CNN) method is then employed for feature extraction and object classification. This architecture enables the pre-trained YOLO model to detect objects, such as vehicle license plates, effectively.

The first stage in the detection process involves resizing the input image to 416x416 pixels, ensuring that all input data conforms to a consistent size, which is critical for maintaining the accuracy of the YOLO model. The resized image is divided into a 7x7 grid of cells, where each cell is responsible for predicting the presence or absence of an object. If an object is detected, a bounding box is generated, and various parameters, such as location (bx, by), dimensions (bw, bh), confidence scores, and class probabilities, are calculated. This method allows the model to accurately localize objects within an image and classify them accordingly.

The YOLO architecture further refines the detection process by downsampling the input image using a reduction factor of 32. This results in an output resolution of 13x13, forming a final grid of 13x13 cells. Each cell predicts five bounding boxes with associated class probabilities, allowing for the detection of multiple objects, such as cars and license plates, within the same image. The final layer of

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935	http://journal-isi.org/index.php/isi	e-ISSN: 2656-4882
--------------------------	--------------------------------------	--------------------------

the YOLO model, which uses linear activation, predicts the class probabilities and bounding boxes, ensuring a comprehensive and accurate detection process. The predicted values are then compared to ground truth data using Intersection over Union (IoU) to assess the bounding box's accuracy in relation to the actual object location.

The implementation of the CNN method in the YOLOv8 algorithm involves several key steps, including convolution, the application of the Rectified Linear Unit (ReLU) activation function, and max pooling. These steps are essential for extracting relevant features from the input image and reducing the dimensionality of the data, thereby enhancing the detection accuracy. The final step involves flattening the 2D feature map into a 1D vector, which is then fed into the fully connected layer to perform the final classification and generate the detection output.

System testing on video data demonstrated that the YOLOv8 model could effectively detect vehicle license plates under daylight conditions with varying degrees of accuracy. Across multiple test videos, the model achieved an average character recognition accuracy of 74.66%. This accuracy, while lower than the object detection performance, indicates room for improvement in character recognition. Factors such as lighting conditions, camera angles, and object motion significantly affected character recognition accuracy. Despite these challenges, the YOLOv8 model showed a competitive advantage in speed and detection accuracy compared to other methods, such as those using the YOLOv5 model and Tesseract OCR.

The performance metrics for object detection, including precision, recall, F1score, and accuracy, all achieved 100%, indicating that the model successfully detected all vehicle license plates without any false positives or false negatives. However, the character recognition component achieved only a 74.66% accuracy rate, primarily due to external factors affecting image quality. These results suggest that while the YOLOv8 model is highly effective in detecting vehicle license plates, further optimization is needed to improve character recognition accuracy. The high detection performance of the model demonstrates its suitability for applications in law enforcement, traffic monitoring, and toll automation systems.

The YOLOv8 model demonstrates a robust capacity for detecting vehicle license plates in video footage, with high precision and recall rates. However, the character recognition accuracy needs improvement to meet the high standards required for practical applications. Future work should focus on enhancing character recognition accuracy by addressing factors such as image quality, lighting conditions, and model training techniques. The implementation of this system shows promise for real-world applications, providing a valuable tool for law

Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935	http://journal-isi.org/index.php/isi	e-ISSN: 2656-4882
--------------------------	--------------------------------------	-------------------

enforcement, traffic monitoring, and other related fields. Further research could explore the integration of more advanced OCR techniques or hybrid models that combine YOLO with other character recognition technologies to achieve even greater accuracy.

4. CONCLUSION

Based on the results of the license plate detection accuracy research obtained from 10 videos taken by the author in analyzing the performance of the system, there are 24 vehicle plate objects detected by the vehicle license plate recognition system using the YOLOv8 pretrained model, showing excellent results with object detection accuracy using Precision, Recall, and F1-score reaching 100%, indicating that this system is very effective in recognizing and detecting vehicle license plates automatic. Character recognition from 10 videos taken by the author in analyzing the performance of the system, there are 24 vehicle plate objects with an average percentage of text conformity using the Easy OCR method detected from vehicle license plates reaching 74.66%. This shows that the developed system is capable of recognizing characters with a low error rate and this system is recommended to be applied in urban traffic surveillance. More research is needed to improve the accuracy of character recognition, especially in more diverse environmental conditions such as low lighting and extreme weather.

REFERENCES

- [1] K. Rifki, J. Priambodho, and A. Musthofa, "Pengenalan Plat Nomor dan Wajah Pengendara Menggunakan Convolutional Neural Network dan Metode Absolute Difference pada Sistem Gerbang Otomatis," *J. Tek. ITS*, vol. 10, no. 2, 2021, doi: 10.12962/j23373539.v10i2.72508.
- [2] M. Rosyadi, R. P. P, and F. T. Industri, "Mendeteksi Plat Nomor Kendaraan Berbasis Website," vol. 6, no. 2, pp. 936–944, 2022.
- [3] M. Zakiyamani, T. I. Cahyani, D. Riana, S. Hardianti, and B. Naren, "Menggunakan Opencv Dan Deep Learning Berbasis Python Detection And Recognition Of Vehicle Number Character Plate Using Python-Based Opencv And Deep Learning," Universitas Nusa Mandiri, vol. 5, pp. 56–64, 2022.
- [4] T. T. H. Vu, D. L. Pham, and T. W. Chang, "A YOLO-based Real-time Packaging Defect Detection System," *Procedia Comput. Sci.*, vol. 217, no. 2022, pp. 886–894, 2022, doi: 10.1016/j.procs.2022.12.285.
- [5] M. R. Rais, F. Utaminingrum, and H. Fitriyah, "Sistem Pengenalan Plat Nomor Kendaraan untuk Akses Perumahan menggunakan YOLOv5 dan Pytesseract berbasis Jetson Nano," vol. 7, no. 2, pp. 681–685, 2023.
- [6] I. Maulana, N. Rahaningsih, and T. Suprapti, "Analisis Penggunaan Model Yolov8 (You Only Look Once) Terhadap Deteksi Citra Senjata

Journal of Information Systems and Informatics Vol. 6, No. 3, September 2024

p-ISSN: 2656-5935	http://journal-isi.org/index.php/isi	e-ISSN: 2656-4882
P 1001 (1 =000 0700	http://journalionoig/indempip/ior	0 1001 11 2000 1002

Berbahaya," JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3621-3627, 2024, doi: 10.36040/jati.v7i6.8271.

- [7] M. Safaldin, N. Zaghden, and M. Mejdoub, "An Improved YOLOv8 to Detect Moving Objects," *IEEE Access*, vol. 12, no. May, pp. 59782–59806, 2024, doi: 10.1109/ACCESS.2024.3393835.
- [8] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once : Unified, Real-Time Object Detection".
- [9] S. Tamang, B. Sen, A. Pradhan, K. Sharma, and V. K. Singh, "Exploring YOLOv8 Object Detection for Accurate Face Mask Classification," *Ijisae*, vol. 2023, no. 2, pp. 892–897, 2023, [Online]. Available: www.ijisae.org
- [10] F. B. Stefanus Adhie Nugroho, Nur Kholis, Endryansyah, "Rancang Bangun Sistem Deteksi Label Kardus Berbasis Model Kecerdasan Buatan YOLO dan EasyOCR serta ESP32-CAM Rancang Bangun Sistem Deteksi Label Kardus Berbasis Model Kecerdasan Buatan YOLO dan EasyOCR serta ESP32-CAM Stefanus Adhie Nugroho Abstrak," *J. Tek. Elektro*, vol. 11, no. 2, pp. 190–200, 2022.
- [11] A. M. Alqadri and F. Utaminingrum, "Pengenalan Papan Nama Ruangan untuk Kendali Kursi Roda Pintar menggunakan YOLOv7-Tiny dan EasyOCR berbasis TX2," vol. 7, no. 5, pp. 2227–2231, 2023.
- [12] M. F. Rahman, D. Alamsah, M. I. Darmawidjadja, and I. Nurma, "Klasifikasi Untuk Diagnosa Diabetes Menggunakan Metode Bayesian Regularization Neural Network (RBNN)," J. Inform., vol. 11, no. 1, p. 36, 2017, doi: 10.26555/jifo.v11i1.a5452.
- [13] D. Nafis Alfarizi, R. Agung Pangestu, D. Aditya, M. Adi Setiawan, and P. Rosyani, "Penggunaan Metode YOLO Pada Deteksi Objek: Sebuah Tinjauan Literatur Sistematis," J. Artif. Intel. dan Sist. Penunjang Keputusan, vol. 1, no. 1, pp. 54–63, 2023.
- B. A. Habsy, N. Mufidha, C. Shelomita, I. Rahayu, and M. I. Muckorobin, "Filsafat Dasar dalam Konseling Psikoanalisis : Studi Literatur," *Indones. J. Educ. Couns.*, vol. 7, no. 2, pp. 189–199, 2023, doi: 10.30653/001.202372.266.
- [15] A. I. Rizal and T. N. Suharsono, "Implementasi Metode Convolutional Neural Network Untuk Klasifikasi Citra Jamur Berbasis Mobile," J. Soc. Sci. Res., vol. 3, pp. 864–875, 2023.