BAB IV

HASIL PENELITIAN

A. Deskripsi Data

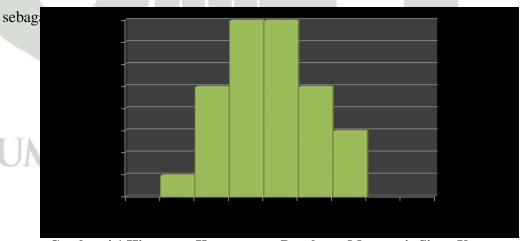
1. Temuan Umum Penelitian

Nama Sekolah adalah MTs. Manunggal BDR Khalipah Deli Serdang, Jalan Kenari No.10, kode pos: 20371, Bandar Khalipah, Kec Percut Sei Tuan, Kabupaten Deli Serdang, Provinsi Sumatera Utara. Madrasah ini memiliki akreditas "B". Sekolah tersebut memiliki 235 siswa. Pada kelas VII terdapat 85 siswa, kelas VIII terdapat 87 siswa dan kelas IX terdapat 67 siswa. Adapun guru Matematika bernama Suci Rahmadhani, S.Pd yang beralumni dari Universitas Muslim Nusantara.

2. Temuan Khusus Penelitian

Deskripsi masing-masing kelompok dapat diuraikan berdasarkan hasil analisis statistik tendensi sentral seperti terlihat pada rangkuman hasil sebagai berikut:

a. Data Hasil Kemampuan Penalaran Matematis Siswa yang diajar Menggunakan Model Pembelajaran *Problem Based Learning* (A₁B₁)


Berdasarkan data yang diperoleh dari hasil postes kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *problem based learning* pada data distribusi frekuensi pada lampiran yang terlampir dapat diuraikan sebagai berikut: nilai rata-rata hitung (X) sebesar 83,3; Variansi = 6,989; Standar Deviasi (SD) =2,644; nilai maksimum = 88; nilai minimum = 78 dengan rentangan nilai (Range) = 10.

Makna dari hasil variansi di atas adalah kemampuan penalaran matematis yang diajar dengan model pembelajaran *problem based learning* mempunyai nilai yang **beragam** atau **berbeda** antara siswa yang satu dengan yang lainnya, karena dapat kita lihat bahwa nilai variansi melebihi nilai tertinggi dari data di atas. Secara kuantitatif dapat dilihat pada tabel berikut ini:

Tabel 4.1 Distribusi Frekuensi Data Kemampuan Penalaran Matematis Siswa Yang Diajar Menggunakan Model Pembelajaran *Problem Based*

Kelas	Interval Kellasa	n <mark>ling kaqli</mark> qi)	Persentase
1	78-79	1	3%
2	80-81	5	17%
3	82-83	8	27%
4	84-85	8	27%
5	86-87	5	17%
6	88-89	3	10%
	Jumlah	30	100%

Berdasarkan nilai-nilai tersebut, dapat dibentuk histogram data kelompok

Gambar 4.1 Histogram Kemampuan Penalaran Matematis Siswa Yang Diajar Menggunakan Model Pembelajaran $Problem\ Based\ Learning$ (A_1B_1)

Sedangkan kategori penilaian data kemampuan penalaran matematis yang diajar dengan model pembelajaran *problem based learning* dapat dilihat pada tabel berikut ini:

Tabel 4.2 Kategori Penilaian Kemampuan Penalaran Matematis Siswa Yang Diajar Menggunakan Model Pembelajaran $Problem\ Based\ Learning\ (A_1B_1)$

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le \text{SKPM} < 45$	0	0,00%	Sangat Kurang
2	$45 \le SKPM < 65$	0	0,00%	Kurang
3	$65 \leq SKPM < 75$	0	0,00%	Cukup
4	$75 \le \text{SKPM} < 90$	/ 30	100,00%	Baik
5	90 ≤ SKPM≤ 100	0	0,00%	Sangat Baik

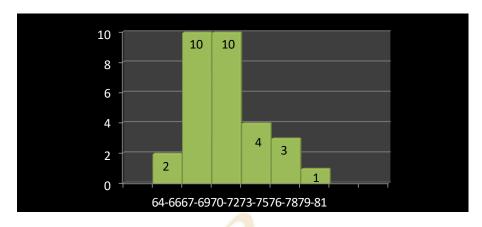
Keterangan: SKPM (Skor Kemampuan Penalaran Matematis)

Dari Tabel di atas Kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *problem based learning* diperoleh bahwa: jumlah siswa yang memperoleh nilai **sangat kurang** tidak ada atau sebesar 0%, yang memiliki kategori **kurang** juga tidak ada atau sebesar 0%, yang memiliki nilai kategori **cukup** pun tidak ada atau sebesar 0%, yang memiliki nilai kategori **baik** sebanyak 30 orang atau 100%, yang memiliki nilai kategori **sangat baik** yaitu tidak ada atau sebanyak 0%. Dengan Mean = 83,3 maka rata-rata kemampuan penalaran matematis siswa pada kelas yang diajar menggunakan model pembelajaran *problem based learning* dapat dikategorikan **baik.**

b. Data Hasil Kemampuan Penalaran Matematis Siswa Yang Diajar Menggunakan Pembelajaran Matematika Realistik (A_2B_1)

Berdasarkan data yang diperoleh dari hasil postes kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran matematika realistik dengan data distribusi frekuensi pada lampiran dapat

diuraikan sebagai berikut: nilai rata-rata hitung (X) sebesar 70,5 ; Variansi =14,809; Standar Deviasi (SD) = 3,848; Nilai maksimum = 80; nilai minimum = 64 dengan rentangan nilai (Range) = 16.


Makna dari hasil variansi di atas adalah kemampuan penalaran matematis siswa yang diajar dengan pembelajaran matematika realistik mempunyai nilai yang **sangat beragam** atau **berbeda** antara siswa yang satu dengan yang lainnya, karena dapat kita lihat bahwa nilai variansi melebihi nilai tertinggi dari data di atas. Secara kuantitatif dapat dilihat pada tabel berikut ini:

Tabel 4.3 Distribusi Frekuensi Data Kemampuan Penalaran Matematis Siswa Yang Diajar Menggunakan Pembelajaran Matematika Realistik (A_2B_1)

Kelas	Interval Kelas	Frekuensi	Persentase
1	64-66	2	7%
2	67-69	10	33%
3	70-72	10	33%
4	73-75	4	13%
5	76-78	3	10%
6	79-81	1	3%
	Jumlah	30	100%

Berdasarkan nilai-nilai tersebut, dapat dibentuk histogram data kelompok sebagai berikut:

Gambar 4.2 Histogram Kemampuan Penalaran Matematis Siswa yang Diajar Menggunakan Pembelajaran Matematika Realistik (A₂B₁)

Sedangkan kategori penilaian data kemampuan penalaran matematis yang diajar dengan pembelajaran matematika realistik dapat dilihat pada Tabel berikut ini:

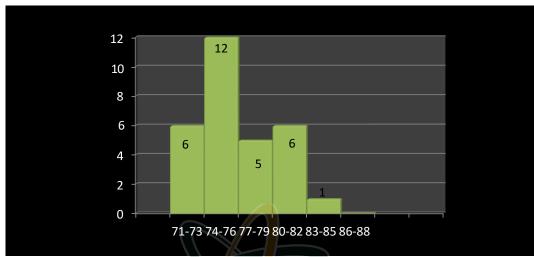
Tabel 4.4 Kategori Penilaian Kemampuan Penalaran Matematis Siswa yang diajar Menggunakan Pembelajaran Matematika Realistik (A_2B_1)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le \text{SKPM} < 45$	0	0,00%	Sangat Kurang
2	$45 \le SKPM < 65$	2	6,67%	Kurang
3	$65 \leq SKPM < 75$	24	80,00%	Cukup
4	$75 \le SKPM < 90$	4	13,33%	Baik
5	90 ≤ SKPM≤ 100	0	0,00%	Sangat Baik

Keterangan: SKPM= Skor Kemampuan Penalaran Matematis

Dari tabel di atas kemampuan penalaran matematis siswa yang diajar dengan pembelajaran matematika realistik diperoleh bahwa: jumlah siswa yang memperoleh nilai **sangat kurang** tidak ada atau sebesar 0%, yang memiliki kategori **kurang** sebanyak 2 orang atau sebear 6,67%, yang memiliki nilai kategori **cukup** sebanyak 24 orang atau sebesar 80%, yang memiliki nilai kategori **baik** yaitu 4 orang atau 13,33%, yang memiliki nilai kategori **sangat baik** yaitu tidak ada atau sebanyak 0%.

c. Data Hasil Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Model Pembelajaran *Problem Based Learning* (A₁B₂)


Berdasarkan data yang diperoleh dari hasil postes kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* dengan data distribusi frekuensi pada lampiran dapat diuraikan sebagai berikut: nilai rata-rata hitung (X) sebesar 76,4; Variansi = 10,524; Standar Deviasi (SD) = 3,244; Nilai maksimum = 84; nilai minimum = 71 dengan rentangan nilai (Range)= 13.

Makna dari hasil variansi di atas adalah kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* mempunyai nilai yang **beragam** atau **berbeda** antara siswa yangsatu dengan yang lainnya, karena dapat kita lihat bahwa nilai variansi melebihi nilai tertinggi dari data di atas. Secara kuantitatif dapat dilihat pada tabel berikut ini:

Tabel 4.5 Distribusi Frekuensi Data Kemampuan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran *Problem* Based Learning (A₁B₂)

Kelas	Interval Kelas	Frekuensi	Persentase
1	71-73	6	20%
2	74-76	12	40%
3	77-79	5	17%
4 U	NIV 80-82 TAS	ISL6M1	NEGER 20%
5	83-85		3%
N_6A	86-88	IA0IX	1 1 0% A
	Jumlah	30	100%

Berdasarkan nilai-nilai tersebut, dapat dibentuk histogram data kelompok sebagai berikut:

Gambar 4.3 Histogram Kemampuan Pemecahan Masalah Matematis Siswa yang Diajar Menggunakan Model pembelajaran *Problem Based Learning* (A₁B₂)

Sedangkan kategori penilaian data kemampuan pemecahan masalah matematis yang diajar dengan model pembelajaran *problem based learning* dapat dilihat pada tabel berikut ini:

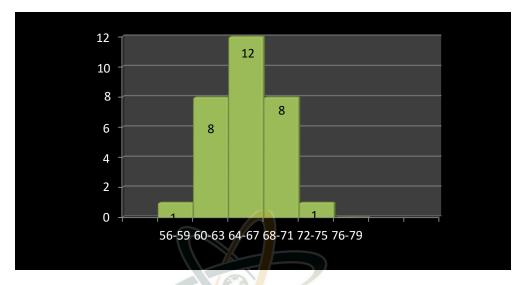
Tabel 4.6 Kategori Penilaian Kemampuan Pemecahan Masalah Matematis Siswa Yang Diajar Menggunakan Model Pembelajaran Problem Based Learning (A₁B₂)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le \text{SKPM} < 45$	0	0,00%	Sangat Kurang
2	$45 \le \text{SKPM} < 65$	0	0,00%	Kurang
3	$65 \leq SKPM < 75$	6	15,00%	Cukup
4	$75 \leq SKPM < 90$	34	85,00%	Baik
5	$90 \le SKPM \le 100$	0	0,00%	Sangat Baik

Keterangan: SKPM= Skor Kemampuan Pemecahan Masalah

Dari tabel di atas kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* diperoleh bahwa: jumlah siswa yang memperoleh nilai **sangat kurang** tidak ada atau sebesar 0%, yang memiliki kategori **kurang** juga tidak ada atau sebear 0%, yang memiliki nilai kategori **cukup** sebanyak 6 orang atau sebesar 15%, yang memiliki nilai kategori **baik** sebanyak 34 orang atau 85%, yang memiliki nilai kategori **sangat baik** yaitu tidak ada atau sebanyak 0%.

d. Data Hasil Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Pembelajaran Matematika Realistik (A₂B₂)


Berdasarkan data yang diperoleh dari hasil postes kemampuan pemecahan masalah matematis siswa yang diajar dengan pembelajaran matematika realistik dengan data distribusi frekuensi pada lampiran dapat diuraikan sebagai berikut: nilai rata-rata hitung (X) sebesar 65,7; Variansi = 19,045; Standar Deviasi (SD) =4,364; Nilai maksimum = 75; nilai minimum = 56 dengan rentangan nilai (Range) = 19.

Makna dari hasil variansi di atas adalah kemampuan pemecahan masalah matematika yang diajar dengan pembelajaran matematika realistik mempunyai nilai yang **sangat beragam** atau **berbeda** antara siswa yang satu dengan yang lainnya, karena dapat kita lihat bahwa nilai variansi melebihi nilai tertinggi dari data di atas. Secara kuantitatif dapat dilihat pada tabel berikut ini:

Tabel 4.7 Distribusi Frekuensi Data Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Pembelajaran Matematika Realistik (A_2B_2)

Kelas	Interval Kelas	Frekuensi	Frekuensi Kumulatif
1	56-59	1	3%
2	60-63	8	27%
3	64-67	12	40%
4	68-71	8	27%
5	11VL ₇₂₋₇₅ 1AS	SLAM N	EGEKI _{3%}
6	76-79		0%
	Jumlah	30	100%

Berdasarkan nilai-nilai tersebut, dapat dibentuk histogram data kelompok sebagai berikut:

Gambar 4.4 Histogram Kemampuan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran matematika realistik (A₂B₂)

Sedangkan kategori penilaian data kemampuan pemecahan masalah matematis yang diajar dengan pembelajaran matematika realistik dapat dilihat pada tabel berikut ini:

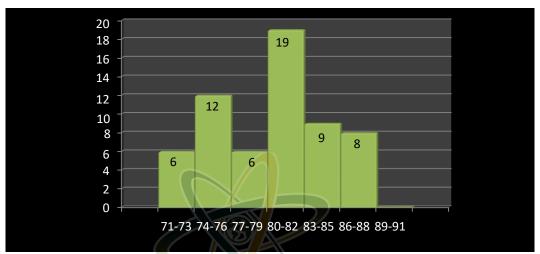
Tabel 4.8 Kategori Penilaian Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Model Pembelajaran Matematika Realistik (A₂B₂)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le \text{SKPM} < 45$	0	0,00%	Sangat Kurang
2	$45 \leq SKPM < 65$	11	36,67%	Kurang
3	$65 \leq SKPM < 75$	18	60,00%	Cukup
4	$75 \leq SKPM < 90$	1	3,33%	Baik
5	$90 \le \text{SKPM} \le 100$	0	0,00%	Sangat Baik

Keterangan: SKPM= Skor Kemampuan Pemecahan Masalah

Dari tabel di atas kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran matematika realistik diperoleh bahwa: jumlah siswa yang memperoleh nilai **sangat kurang** yaitu tidak ada atau sebesar 0%, yang memiliki kategori **kurang** sebanyak 11 orang atau sebesar 36,67%, yang memiliki nilai kategori **cukup** sebanyak 18 orang atau sebesar 60%, yang memiliki nilai kategori **baik** ada seorang atau 3,33%, yang memiliki nilai kategori **sangat baik** yaitu tidak ada atau sebanyak 0%.

e. Data Hasil Kemampuan Penalaran Matematis dan Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Model Pembelajaran $Problem\ Based\ Learning\ (A_1)$


Berdasarkan data yang diperoleh dari hasil postes kemampuan penalaran matematis dan kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* dengan data distribusi frekuensi pada lampiran dapat diuraikan sebagai berikut: nilai rata- rata hitung (X) sebesar 79,9; Variansi = 20,829; Standar Deviasi (SD) = 4,564; Nilai maksimum = 88; nilai minimum = 71 dengan rentangan nilai (Range) = 17.

Makna dari hasil variansi di atas adalah kemampuan penalaran matematis dan kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* mempunyai nilai yang **beragam** atau **berbeda** antara siswa yang satu dengan yang lainnya, karena dapat kita lihat bahwa nilai variansi melebihi nilai tertinggi dari data di atas. Secara kuantitatif dapat dilihat pada tabel berikut ini:

Tabel 4.9 Distribusi Frekuensi Data Kemampuan Penalaran Matematis dan Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Model Pembelajaran *Problem Based Learning* (A₁)

Kelas	Interval Kelas	Frekuensi	Persentase
1	71-73	6	10%
2 U	74-76TAS IS	SLA12 NI	EGERI 20%
3	77-79	- 6	10%
J/4A	80-82	A 19 A	32%
5	83-85	9	15%
6	86-88	8	13%
7	89-91	0	0%
	Jumlah	60	100%

Berdasarkan nilai-nilai tersebut, dapat dibentuk histogram data kelompok sebagai berikut:

Gambar 4.5. Histogram Kemampuan Penalaran Matematis dan Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Model Pembelajaran Problem Based Learning (A₁)

Sedangkan kategori penilaian data kemampuan penalaran matematis dan kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* dapat dilihat pada tabel berikut ini:

Tabel 4.10 Kategori Penilaian Kemampuan Penalaran Matematis dan Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Model Pembelajaran *problem based learning* (A₁)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le SKPM/PM < 45$	0	0,00%	Sangat Kurang
2	$45 \leq SKPM/PM < 65$	0	0,00%	Kurang
3	$65 \leq SKPM/PM < 75$	6	10,00%	Cukup
4	$75 \leq SKPM/PM < 90$	54	90,00%	Baik
5	90 ≤ SKPM/PM ≤ 100	43 1310AM N	0,00%	Sangat Baik

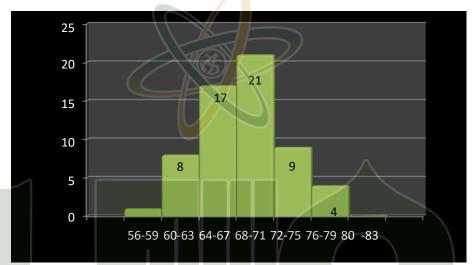
Keterangan:

SKPM/PM = Skor Kemampuan Penalaran Matematis / Pemecahan Masalah

Dari tabel di atas kemampuan penalaran matematis dan kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* diperoleh bahwa: jumlah siswa yang memperoleh nilai sangat kurang tidak ada atau sebesar 0%, yang memiliki kategori

kurang juga tidak ada atau sebesar 0%, yang memiliki nilai kategori **cukup** sebanyak 6 orang atau sebesar 10%, yang memiliki nilai kategori **baik** sebanyak 54 orang atau 90%, yang memiliki nilai kategori **sangat baik** yaitu tidak ada atau sebanyak 0%.

f. Data Hasil Kemampuan Penalaran Matematis dan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Pembelajaran Matematika Realistik (A_2)


Berdasarkan data yang diperoleh dari hasil postes kemampuan penalaran matematis dan pemecahan masalah matematis siswa yang diajar dengan pembelajaran matematika realistik dengan data distribusi frekuensi pada lampiran dapat diuraikan sebagai berikut: nilai rata-rata hitung (X) sebesar 68,1; Variansi = 22,417; Standar Deviasi (SD) = 4,735; Nilai maksimum = 80; nilai minimum = 56 dengan rentangan nilai (Range) = 24. Makna dari hasil variansi di atas adalah kemampuan penalaran matematis dan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran matematika realistik mempunyai nilai yang **sangat beragam** atau **berbeda** antara siswa yang satu dengan yang lainnya, karena dapat kita lihat bahwa nilai variansi melebihi nilai tertinggi dari data di atas. Secara kuantitatif dapat dilihat pada tabel berikut ini:

Tabel 4.11 Distribusi Frekuensi Data Kemampuan Penalaran Matematis dan Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Model Pembelajaran Matematika Realistik (A_2)

Kelas	Interval Kelas	Frekuensi	Persentase
1	56-59	1	2%
2	60-63	8	13%
3	64-67	17	28%

4	68-71	21	35%
5	72-75	9	15%
6	76-79	4	7%
7	80-83	0	0%
Jumlah		60	100%

Berdasarkan nilai-nilai tersebut, dapat dibentuk histogram data kelompok sebagai berikut:

Gambar 4.6 Histogram Kemampuan Penalaran Matematis dan Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Model Pembelajaran Matematika Realistik (A₂)

Sedangkan kategori penilaian data kemampuan penalaran matematis dan pemecahan masalah matematis siswa yang diajar dengan metodepembelajaran matematika realistik dapat dilihat pada tabel berikut ini:

Tabel 4.12 Kategori Penilaian Kemampuan Penalaran Matematis dan Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Model Pembelajaran Matematika Realistik(A₂)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le SKPM/PM < 45$	0	0,00%	Sangat Kurang
2	$45 \le SKPM/PM < 65$	13	21,67%	Kurang
3	$65 \leq SKPM/PM < 75$	42	70,00%	Cukup
4	$75 \le SKPM/PM < 90$	5	8,33%	Baik
5	$90 \le \text{SKPM/PM} \le 100$	0	0,00%	Sangat Baik

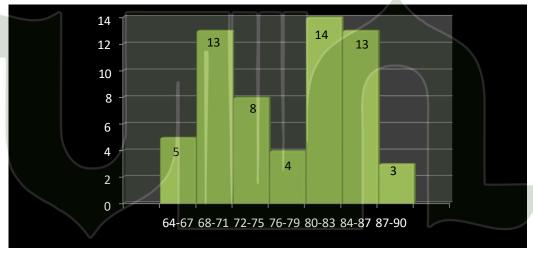
Keterangan:

SKPM/PM = Skor Kemampuan Penalaran Matematis/Pemecahan Masalah

Dari tabel di atas kemampuan penalaran matematis dan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran matematika realistik diperoleh bahwa: jumlah siswa yang memperoleh nilai **sangat kurang** tidak ada atau sebesar 0%, yang memiliki kategori **kurang** sebanyak 13 orang atau sebesar 21,67%, yang memiliki nilai kategori **cukup** sebanyak 42 orang atau sebesar 70%, yang memiliki nilai kategori **baik** sebanyak 5 orang atau 8,33%, yang memiliki nilai kategori **sangat baik** tidak ada atau 0%.

g. Data Hasil Kemampuan Penalaran Matematis Siswa yang diajar Menggunakan Model Pembelajaran *Problem Based Learning* dan Pembelajaran Matematika Realistik (B₁)

Berdasarkan data yang diperoleh dari hasil postes kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan pembelajaran matematika realistik, data distribusi frekuensi pada lampiran dapat diuraikan sebagai berikut: nilai rata-rata hitung


(X) sebesar 76,9; Variansi = 52,803; Standar Deviasi (SD) = 7,267; Nilai maksimum = 88; nilai minimum = 64 dengan rentangan nilai (Range) = 24.

Makna dari hasil Variansi di atas adalah kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan pembelajaran matematika realistik mempunyai nilai yang **sangat beragam** atau **berbeda** antara siswa yang satu dengan yang lainnya, karena dapat kita lihat bahwa nilai variansi melebihi nilai tertinggi dari data di atas. Secara kuantitatif dapat dilihat pada tabel berikut ini:

Tabel 4.13 Distribusi Frekuensi Data Kemampuan Penalaran Matematis Siswa yang diajar Menggunakan Model Pembelajaran *Problem Based Learning* dan Pembelajaran Matematika Realistik (B₁)

Kelas	Interval Kelas	Frekuensi	Persentase
1	64-67	5	8%
2	68-71	13	22%
3	72-75	8	13%
4	76-79	4	7%
5	80-83	14	23%
6	84-87	13	22%
7	87-90	3	5%
	Jumlah	60	100%

Berdasarkan nilai-nilai tersebut, dapat dibentuk histogram data kelompok sebagai berikut:

Gambar 4.7 Histogram Kemampuan Penalaran Matematis Siswa yang diajar Menggunakan Model Pembelajaran *Problem Based Learning* dan Pembelajaran Matematika Realistik (B₁)

Sedangkan kategori penilaian data kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan pembelajaran matematika realistik dapat dilihat pada tabel berikut ini:

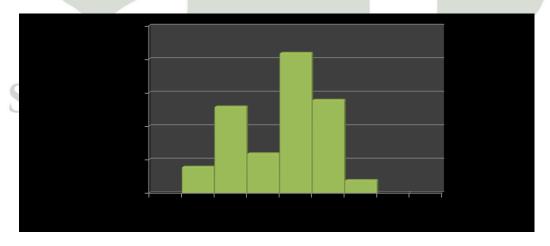
Tabel 4.14 Kategori Penilaian Kemampuan Penalaran Matematis Siswa yang diajar Menggunakan Model Pembelajaran *Problem Based Learning* dan Pembelajaran Matematika Realistik (B₁)

No	Interval Nilai	Jumlah Siswa	Persentase	Kategori Penilaian
1	$0 \le SKPM < 45$	0	0,00%	Sangat Kurang
2	$45 \leq SKPM < 65$	2	3,33%	Kurang
3	$65 \leq SKPM < 75$	24	40,00%	Cukup
4	$75 \le \text{SKPM} < 90$	34	56,67%	Baik
5	$90 \le \text{SKPM} \le 100$	0	0,00%	Sangat Baik

Keterangan: SKPM= Skor Kemampuan Penalaran Matematis

Dari Tabel di atas kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan pembelajaran matematika realistik diperoleh bahwa: jumlah siswa yang memperoleh nilai **sangat kurang** tidak ada atau sebesar 0%, yang memiliki kategori **kurang** sebanyak 2 orang atau sebesar 3,33%, yang memiliki nilai kategori **cukup** sebanyak 24 orang atau sebesar 40%, yang memiliki nilai kategori **baik**sebanyak 34 orang atau 56,67%, yang memiliki nilai kategori **sangat baik** tidak ada atau sebanyak 0%.

h. Data Hasil Kemampuan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran *Problem Based Learning* dan Pembelajaran Matematika Realistik (B₂)


Berdasarkan data yang diperoleh dari hasil postes kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan pembelajaran matematika realistik, data distribusi frekuensi pada lampiran dapat diuraikan sebagai berikut: nilai rata- rata hitung (X) sebesar 71,1; Variansi = 43,642; Standar Deviasi (SD) = 6,606; Nilai maksimum = 84; nilai minimum = 56 dengan rentangan nilai (Range) = 28.

Makna dari hasil variansi di atas adalah kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan pembelajaran matematika realistik mempunyai nilai yang **sangat beragam** atau **berbeda** antara siswa yang satu dengan yang lainnya, karena dapat kita lihat bahwa nilai variansi melebihi nilai tertinggi dari data di atas. Secara kuantitatif dapat dilihat pada tabel berikut ini:

Tabel 4.15 Distribusi Frekuensi Data Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Model Pembelajaran Problem Based Learning dan Pembelajaran Matematika Realistik (B₂)

]	Kelas	I	nterval Kelas	Frekuensi	Persentase
	1		56-60	4	7%
	2 61-65		61-65 13		22%
	3	66-70		6	10%
	4		71-75	21	35%
	5		76-80	14	23%
	6		81-85	2	3%
	7		86-90	0	0%
		Ju	mlah	60	100%

Berdasarkan nilai-nilai tersebut, dapat dibentuk histogram data kelompok sebagai berikut:

Gambar 4.8 Histogram Kemampuan Pemecahan Masalah Matematis Siswa yang Diajar dengan Model Pembelajaran *Problem Based Learning* dan Pembelajaran Matematika Realistik (B₂)

Sedangkan kategori penilaian data kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan pembelajaran matematika realistik dapat dilihat pada tabel berikut ini:

Tabel 4.16 Kategori Penilaian Kemampuan Pemecahan Masalah Matematis Siswa yang Diajar Menggunakan Model Pembelajaran Problem Based Learning dan Pembelajaran Matematika Realistik (B₂)

No	Interval Nilai	Jumlah Si <mark>s</mark> wa	Persentase	Kategori Penilaian
1	$0 \le \text{SKPM} < 45$	0	0,00%	Sangat Kurang
2	$45 \le SKPM < 65$	11	18,33%	Kurang
3	$65 \leq \text{SKPM} < 75$	24	40,00%	Cukup
4	$75 \le \text{SKPM} < 90$	25	41,67%	Baik
5	90 ≤ SKPM ≤ 100	0	0,00%	Sangat Baik

Keterangan: SKPM= Skor Kemampuan Pemecahan Masalah

Dari tabel di atas kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan pembelajaran matematika realistik diperoleh bahwa: jumlah siswa yang memperoleh nilai **sangat kurang** tidak ada atau sebesar 0%, yang memiliki kategori **kurang** sebanyak 11 orang atau sebesar 18,33%, yang memiliki nilai kategori **cukup** sebanyak 24 orang atau sebesar 40%, yang memiliki nilai kategori **baik** sebanyak 25 orang atau 41,67%, yang memiliki nilai kategori **sangat baik** tidak ada atau sebanyak 0%.

i. Deskripsi Hasil Penelitian

Secara ringkas hasil penelitian dari kemampuan penalaran matematis dan kemampuan pemecahan masalah matematis siswa yang diajar dengan pembelajaran *problem based learning* dan pembelajaran matematika realistik dapat dideskripsikan seperti terlihat pada tabel. di bawah ini:

Tabel 4.17 Hasil Perbedaan Kemampuan Penalaran Matematis dan Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Pembelajaran *Problem Based Learning* dan Pembelajaran Matematika Realistik

Sumber Statistik	$A_1(PBL)$	A ₂ (PMR)	Jumlah
	n = 30	n = 30	n = 60
	$\sum X = 2500$	$\sum X = 2114$	$\sum X = 4614$
B ₁ (KPM)	$\sum X^2 = 208536$	$\sum X^2 = 149396$	$\sum X^2 = 357932$
	Sd = 2,64	Sd = 3.85	Sd = 7,27
	Var = 6,98	Va <mark>r</mark> = 14,81	Var = 52,80
	Mean = 83,3	M_{e} an = 70,47	Mean = $76,90$
	n = 30	n = 30	n = 60
	$\sum X = 2292$	$\sum X = 1971$	$\sum X = 4263$
B ₂ (KPM)	$\sum X^2 = 175414$	$\sum X^2 = 130047$	$\sum X^2 = 305461$
	Sd = 3,24	Sd = 4,36	Sd = 6,61
	Var = 10,52	Var = 19,04	Var = 43,64
	Mean = $76,40$	Mean = $65,70$	Mean = $71,05$
	n = 60	n = 60	n = 120
	$\sum X = 4792$	$\sum X = 4085$	$\sum X = 8877$
Jumlah	$\sum X^2 = 383950$	$\sum X^2 = 279443$	$\sum X^2 = 663393$
	Sd = 4,56	Sd = 4,73	Sd = 7,51
	Var = 20,83	Var = 22,42	Var = 56,44
	Mean = $79,87$	Mean = $68,08$	Mean = $73,98$

Keterangan:

 A_1 : Siswa yang diajar dengan pembelajaran problem based learning

 A_2 : Siswa yang diajar dengan pembelajaran matematika realistik

 B_1 : Kemampuan penalaran matematis siswa

 B_2 : Kemampuan pemecahan masalah matematis siswa

B. Uji Persyaratan Analisis

Sebelum melakukan uji hipotesis dengan analisis varians (ANAVA) terhadap hasil tes siswa perlu dilakukan uji persyaratan data meliputi: Pertama, bahwa data bersumber dari sampel jenuh. Kedua, sampel berasal dari populasi yang berdistribusi normal. Ketiga, kelompok data mempunyai variansi yang

homogen. Maka, akan dilakukan uji persyaratan analisis normalitas dan homogenitas dari distribusi data hasil tes yang telah dikumpulkan.

1. Uji Normalitas

Salah satu teknik analisis dalam uji normalitas adalah teknik analisis *Lilliefors*, yaitu suatu teknik analisis uji persyaratan sebelum dilakukannya uji hipotesis. Berdasarkan sampel acak maka diuji hipotesis nol bahwa sampel berasal dari populasi berdistribusi normal dan hipotesis tandingan bahwa populasi berdistribusi tidak normal. Dengan ketentuan Jika L-hitung < L-tabel maka sebaran data memiliki distribusi normal. Tetapi jika L-hitung > L-tabel maka sebaran data tidak berdistribusi normal. Hasil analisis normalitas untuk masing- masing sub kelompok dapat dijelaskan sebagai berikut:

a. Hasil Kemampuan Penalaran Matematis Siswa yang diajar Menggunakan Model Pembelajaran *Problem Based Learning* (A₁B₁)

Berdasarkan hasil perhitungan uji normalitas untuk sampel pada hasil kemampuan penalaran matematis matematika siswa yang diajar dengan model pembelajaran *problem based learning* (A₁B₁) diperoleh nilai L-_{hitung} = **0,160** dengan nilai L-_{tabel} = **0,162** Karena L-_{hitung} < L-_{tabel} yakni **0,160** < **0,162** maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa sampel pada kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *problem based learning* berasal dari populasi yang berdistribusi normal.

b. Hasil Kemampuan Penalaran Matematis Siswa yang diajar Menggunakan Pembelajaran Matematika Realistik (A_2B_1)

Berdasarkan hasil perhitungan uji normalitas untuk sampel pada hasil kemampuan penalaran matematis matematika siswa yang diajar dengan Pembelajaran matematika realistik (A_2B_1) diperoleh nilai L-hitung = 0,148 dengan nilai L-tabel = 0,162. Karena L-hitung < L-tabel yakni 0,148 < 0,162 maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa sampel pada hasil kemampuan penalaran matematis matematika siswa yang diajar dengan model pembelajaran matematika realistik berasal dari populasi yang berdistribusi normal.

c. Hasil Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Model Pembelajaran *Problem Based Learning* (A₁B₂)

Berdasarkan hasil perhitungan uji normalitas untuk sampel pada hasil kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* (A₁B₂) diperoleh nilai L-_{hitung} = **0,149** dengan nilai L-_{tabel} = **0,162**. Karena L-_{hitung} < L-_{tabel}, maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa sampel pada hasil kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* berasal dari populasi yang <u>berdistribusi</u> normal.

d. Hasil Kemampuan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Pembelajaran Matematika Realistik (A_2B_2)

Berdasarkan hasil perhitungan uji normalitas untuk sampel pada hasil kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran matematika realistik (A_2B_2) diperoleh nilai L-hitung = 0,130 dengan nilai L-tabel = 0,162. Karena L-hitung < L-tabel yakni 0,130 < 0.162 maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa sampel pada hasil kemampuan pemecahan masalah matematis siswa yang

diajar dengan model pembelajaran matematika realistik berasal dari populasi yang berdistribusi normal.

e. Hasil Kemampuan Penalaran Matematis dan Pemecahan Masalah Matematis Siswa yang diajar Menggunakan Model Pembelajaran $Problem\ Based\ Learning\ (A_1)$

Berdasarkan hasil perhitungan uji normalitas untuk sampel pada hasil kemampuan penalaran matematis dan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* (A₁) diperoleh nilai L-_{hitung} = **0,102** dengan nilai L-_{tabel} = **0,114**. Karena L-_{hitung} < L- _{tabel} yakni **0,102** < **0,114** maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa sampel pada hasil kemampuan penalaran matematis dan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* berasal dari populasi yang <u>berdistribusi normal</u>.

f. Hasil Kemampuan Penalaran Matematis dan Pemecahan Masalah Matematis Siswa yang diajar dengan Model Pembelajaran Matematika Realistik (A_2)

Berdasarkan hasil perhitungan uji normalitas untuk sampel pada hasil kemampuan penalaran matematis dan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran matematika realistik (A₂) diperoleh nilai L-_{hitung} = 0,059 dengan nilai L-_{tabel} = 0,114. Karena L-_{hitung} < L-_{tabel} yakni 0,059 < 0,114 maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa sampel pada hasil kemampuan penalaran matematis dan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran matematika realistik berasal dari populasi yang <u>berdistribusi normal</u>.

g. Hasil Kemampuan Penalaran Matematis Siswa yang diajar Menggunakan Model Pembelajaran Problem Based Learning dan Pembelajaran Matematika Realistik (B_1)

Berdasarkan hasil perhitungan uji normalitas untuk sampel pada hasil kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan pembelajaran matematika realistik (B₁) diperoleh nilai L-_{hitung} = **0,113** dengan nilai L-_{tabel} = **0,114**. Karena L- _{hitung} < L-_{tabel} yakni **0,113** < **0,114** maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa sampel pada hasil kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan pembelajaran matematika realistik berasal dari populasi yang berdistribusi normal.

h. Hasil Kemampuan Pemecahan Masalah Matematis Siswa yang Diajar Menggunakan Model Pembelajaran *Problem Based Learning* dan Pembelajaran Matematika Realistik (B₂)

Berdasarkan hasil perhitungan uji normalitas untuk sampel pada hasil kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan pembelajaran matematika realistik (B₂) diperoleh nilai L_{hitung} = **0,108** dengan nilai L_{tabel} = **0,114**. Karena L_{hitung} < L_{tabel} yakni **0,108** < **0,114** maka dapat disimpulkan hipotesis nol diterima. Sehingga dapat dikatakan bahwa sampel pada hasil kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan pembelajaran matematika realistik berasal dari populasi yang <u>berdistribusi normal</u>.

Kesimpulan dari seluruh data hasil uji normalitas kelompok-kelompok data di atas dapat diambil kesimpulan bahwa semua sampel berasal dari populasi yang berdistribusi normal sebab semua L-hitung < L-tabel. Kesimpulan hasil uji normalitas dari masing-masing kelompok dapat dilihat pada tabel berikut:

Tabel 4.18 Rangkuman Hasil Uji Normalitas dengan Teknik Analisis Lilliefors

Kelompok	L – hitung	L - tabel α = 0,05	Kesimpulan
A_1B_1	0,160		Ho: Diterima, Normal
A_1B_2	0,148	0,162	Ho: Diterima, Normal
A_2B_1	0,149	0,102	Ho : Diterima, Normal
A_2B_2	0,130		Ho : Diterima, Normal
A_1	0,102	\ <u> </u>	Ho : Diterima, Normal
A_2	0,059	0,114	Ho: Diterima, Normal
B_1	0,113	0,114	Ho : Diterima, Normal
B_2	0,108		Ho : Diterima, Normal

Keterangan:

 A_1B_1 = Hasil kemampuan penalaran matematis siswa yang diajar menggunakan model pembelajaran *problem based learning*

A₁B₂ = Hasil kemampuan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran *problem based learning*

A₂B₁ = Hasil kemampuan penalaran matematis siswa yang diajar menggunakan model pembelajaran matematika realistik

A₂B₂ = Hasil kemampuan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran matematika realistik

2. Uji Homogenitas

Pengujian homogenitas varians populasi yang berdistribusi normal dilakukan dengan uji *Bartlett*. Dari hasil perhitungan χ^2_{hitung} (chi-Kuadrat) diperoleh nilai lebih kecil dibandingkan harga pada χ^2_{tabel} . Hipotesis statistik yang diuji dinyatakan sebagai berikut:

$$H_0: \sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2 = \sigma_5^2$$

Ha: paling sedikit satu tanda sama dengan tidak berlaku

Dengan Ketentuan Jika $X^2_{hitung} < X^2_{tabel}$ maka dapat dikatakan bahwa, responden yang dijadikan sampel penelitian tidak berbeda atau menyerupai karakteristik dari populasinya atau Homogen. Jika $X^2_{hitung} > X^2_{tabel}$ maka dapat

dikatakan bahwa, responden yang dijadikan sampel penelitian berbeda karakteristik dari populasinya atau tidak homogen.

Uji homogenitas dilakukan pada masing-masing sub-kelompok sampel yakni: (A_1B_1) , (A_1B_2) , (A_2B_1) , (A_2B_2) . Rangkuman hasil analisis homogenitas dapat dilihat pada tabel berikut:

Tabel 4.19 Rangkuman hasil Uji Homogenitas untuk kelompok sampel $(A_1B_1), (A_1B_2), (A_2B_1), (A_2B_2)$

Kelompok	Dk	S ²	dk.S ² i	logS ² i	dk.logS ² i	X ² hitung	X ² table	Keputusan
A_1B_1	29	6,99	202,67	0,84	24,49			Homogen
A_1B_2	29	10,52	305,20	1,02	29,64	2,30	7,81	
A_2B_1	29	14,81	429,47	1,17	33,95	2,30		
A_2B_2	29	19,04	552,30	1,28	37,11			
A_1	59	20,83	1.228,93	1,32	77,80	0,08		
A_2	59	22,42	1.322,58	1,35	79,68	0,00	3,84	Uomogon
B ₁	59	52,80	3.115,40	1,72	101,64	0.53	1	Homogen
B ₂	59	43,64	2.574,85	1,64	96,75	0,53		

Berdasarkan tabel hasil uji homogenitas di atas dapat disimpulkan bahwa, semua kelompok sampel berasal dari populasi yang homogen.

C. Pengujian Hipotesis

1. Analisis Varians

Analisis yang digunakan untuk menguji keempat hipotesis yang diajukan dalam penelitian ini adalah analisis varians dua jalan dan diuji dengan Tukey. Hasil analisis data berdasarkan ANAVA 2 x 2 secara ringkas disajikan pada tabel berikut:

Tabel 4.20 Rangkuman Hasil Analisis Varians

Sumber Varians	Dk	JK	RJK	F _{Hitung}	F _{Tabel} α 0,05
Antar Kolom (A):	1	4165,41	4165,41	324,37***	4,17
Antar Baris (B):	1	1026,68	1026,68	79,95***	7,17
Interaksi (A x B)	1	1035,21	1035,21	80,61***	
Antar Kelompok A dan B	3	5227,29	1742,43	135,69***	2,92
Dalam Kelompok (Antar Sel)	116	1489,63	12,84		
Total Reduksi	119	6716,93			

Keterangan:

* = Tidak Signifikan

** = Signifikan

** * = Sangat Signifikan dk = derajat kebebasan

RJK = Rerata Jumlah Kuadrat.

Setelah diketahui uji perbedaan melalui analisis varians (ANAVA) 2 x 2 digunakan uji lanjut dengan uji Tukey yang dilakukan pada kelompok.: (1) *Main Effect* A yaitu A₁ dan A₂ serta *main effect* B yaitu B₁ dan B₂ dan (2) *Simple Effect* A yaitu A₁ dan A₂ untuk B₁ serta A₁ dan A₂ untuk B₂, *Simple Effect* B yaitu B₁ dan B₂ untuk A₁ serta B₁ dan B₂ untuk A₂.

Setelah dilakukan analisis varians (ANAVA) melalui uji F maka kemudian melakukan perhitungan koefisien F_{hitung} melalui ANAVA, maka masing-masing hipotesis dan pembahasan dapat dijabarkan sebagai berikut:

a. Hipotesis Pertama

Hipotesis penelitian: terdapat perbedaan kemampuan penalaran matematis siswa yang diajar menggunakan model pembelajaran *problem based learning* dan matematika realistik.

Hipotesis Statistik:

Ho: $\mu A_1 B_1 = \mu A_2 B_1$

 $\mathrm{Ha}: \mu A_1 B_1 \neq \mu A_2 B_1$

Terima Ho, jika: Fhitung < Ftabel

Untuk menguji hipotesis pertama maka langkah selanjutnya dilakukan uji ANAVA satu jalur untuk *simple affect* A yaitu: Perbedaan antara A₁ dan A₂ yang terjadi pada B₁. Rangkuman hasil analisis dapat dilihat pada pada tabel berikut:

Tabel 4.21 Perbedaan Antara A₁ dan A₂ yang Terjadi Pada B₁

Cumbar Variana	Dk JK		DIV	IF	\mathbf{F}_{Tabel}	
Sumber Varians	DK	JK	RJK	F _{Hitung}	α 0,05	α 0,01
Antar (A)	1	2483,27	2483,27	227,85		
Dalam	58	632,13	10,90		4.00	7.08
Total	59	3115,40				

Berdasarkan hasil analisis uji F yang terdapat pada rangkuman hasil ANAVA, diperoleh nilai $F_{hitung} = 227,85$, diketahui nilai pada F_{tabel} pada taraf (α = 0,05) = 4,007. Selanjutnya dengan membandingkan F_{hitung} dengan F_{tabel} untuk menentukan kriteria penerimaan dan penolakan H_o , diketahui bahwa nilai koefisien $F_{hitung} > F_{tabel}$ berdasarkan ketentuan sebelumnya maka menolak H_o dan menerima H_a .

Berdasarkan hasil pembuktian hipotesis pertama ini memberikan temuan bahwa: **Terdapat** perbedaan antara hasil kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran *problem based learning* dengan siswa yang diajar dengan model pembelajaran matematika realistik pada materi sistem persamaan linier dua variabel.

b. Hipotesis Kedua

Hipotesis penelitian: Terdapat perbedaan kemampuan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran *problem based learning* dan matematika realistik.

Hipotesis Statistik

Ho : $\mu A_1 B_2 = \mu A_2 B_2$

Ha : $\mu A_1 B_2 \neq \mu A_2 B_2$

Terima Ho, jika: Fhitung < Ftabel

Untuk menguji hipotesis kedua maka langkah selanjutnya dilakukan uji ANAVA satu jalur untuk *simple affect* A yaitu: Perbedaan antara A₁ dan A₂ yang terjadi pada B₂. Rangkuman hasil analisis dapat dilihat pada pada tabel berikut:

Tabel 4.22 Perbedaan Antara A₁ dan A₂ yang Terjadi Pada B₂

Sumber	Dk	JK	RJK	TC.	$\mathbf{F}_{\mathbf{T}}$	'abel
Varians	DK	JK	KJK	F _{Hitung}	α 0,05	α 0,01
Antar (B)	1	1717,35	1717,35	116,16		
Dalam	58	857,50	14,78		4,00	7,08
Total	59	2574,85				

Berdasarkan hasil analisis uji F yang terdapat pada rangkuman hasil ANAVA, diperoleh nilai F_{hitung} = 116,16 diketahui nilai pada F_{tabel} pada taraf (α = 0,05) = 4,007. Selanjutnya dengan membandingkan F_{hitung} dengan F_{tabel} untuk menentukan kriteria penerimaan dan penolakan H_o , diketahui bahwa nilai koefisien F_{hitung} > F_{tabel} berdasarkan ketentuan sebelumnya maka menolak H_o dan menerima H_a .

Berdasarkan hasil pembuktian hipotesis kedua ini memberikan temuan bahwa: **Terdapat** perbedaan antara hasil kemampuan pemecahan masalah

matematis siswa yang diajar dengan model pembelajaran *problem based* learning dan siswa yang diajar dengan model pembelajaran matematika realistik pada materi sistem persamaan linier dua variabel.

c. Hipotesis ketiga

Hipotesis penelitian: Terdapat perbedaan kemampuan penalaran dan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran *problem based learning*

Hipotesis Statistik

Ho : $\mu A_1 B_1 = \mu A_1 B_2$

Ha : $\mu A_1 B_1 \neq \mu A_1 B_2$

 $Terima\ H_{o,}\ jika\ _{:}F_{hitung}{<}\ F_{tabel}$

Untuk menguji hipotesis kedua maka langkah selanjutnya dilakukan uji ANAVA satu jalur untuk *simple affect* A yaitu: Perbedaan antara B₁ dan B₂ yang terjadi pada A₂. Rangkuman hasil analisis dapat dilihat pada pada tabel berikut:

Tabel 4.23 Perbedaan Antara B₁ dan B₂ yang Terjadi Pada A₁

IIIII	ER	I ZATIZ	1 MALIZ	JEGERI	\mathbf{F}_{Ta}	ibel
Sumber Varians	Dk	JIJK	RJK	F _{Hitung}	α 0,05	α 0,01
Antar (B)	1	721,07	721,07	82,35	DA	N
Dalam	58	507,87	8,76		4,00	7,08
Total	59	1228,93				

Berdasarkan hasil analisis uji F yang terdapat pada rangkuman hasil ANAVA, diperoleh nilai $F_{hitung} = 82,35$ diketahui nilai pada F_{tabel} pada taraf ($\alpha = 0,05$) = 4,007. Selanjutnya dengan membandingkan F_{hitung} dengan F_{tabel}

untuk menentukan kriteria penerimaan dan penolakan H_o , diketahui bahwa nilai koefisien $F_{hitung} > F_{tabel}$ berdasarkan ketentuan sebelumnya maka menolak H_o dan menerima H_a .

Berdasarkan hasil pembuktian hipotesis kedua ini memberikan temuan bahwa: **Terdapat** perbedaan kemampuan penalaran dan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran *problem based learning* pada materi sistem persamaan linier dua variabel.

d. Hipotesis Keempat

Hipotesis Penelitian: Terdapat perbedaan kemampuan penalaran dan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran matematika realistik pada materi Sistem persamaan linier dua variabel.

Hipotesis Statistik

Ho : $\mu A_1 B_2 = \mu A_2 B_2$

Ha : $\mu A_1 B_2 \neq \mu A_2 B_2$

Terima Ho, jika: Fhitung < Ftabel

Untuk menguji hipotesis kedua maka langkah selanjutnya dilakukan uji ANAVA satu jalur untuk *simple affect* A yaitu: Perbedaan antara B₁ dan B₂ yang terjadi pada A₂. Rangkuman hasil analisis dapat dilihat pada pada tabel berikut:

Tabel 4.24 Perbedaan Antara B₁ dan B₂ yang Terjadi Pada A₂

Cumbar Variana	Dir	IIZ	DIV	E	$\mathbf{F_{Tabel}}$	
Sumber Varians	Dk	JK	RJK	$\mathbf{F}_{\mathbf{Hitung}}$	α 0,05	α 0,01
Antar (A)	1	6,67	6,67	21,41		
Dalam	58	8276,93	142,71		4,00	7,08
Total	59	8283,60				

Berdasarkan hasil analisis uji F yang terdapat pada rangkuman hasil ANAVA, diperoleh nilai $F_{hitung} = 21,41$ diketahui nilai pada F_{tabel} pada taraf $(\alpha=0,05)=4,007$. Selanjutnya dengan membandingkan F_{hitung} dengan F_{tabel} untuk menentukan kriteria penerimaan dan penolakan H_o , diketahui bahwa nilai koefisien $F_{hitung} > F_{tabel}$ berdasarkan ketentuan sebelumnya maka menolak H_o dan menerima H_a .

Berdasarkan hasil pembuktian hipotesis kedua ini memberikan temuan bahwa: **Terdapat** perbedaan kemampuan penalaran dan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran matematika realistik pada materi sistem persamaan linier dua variabel.

Tabel 4.25 Rangkuman Hasil Analisis

N o	Hipotesis Statistik	Hipotesis Verbal Temu	an Kesimpulan
51	Ho: $\mu A_1 B_1 = \mu A_2 B_1$ Ha: $\mu A_1 B_1 \neq \mu A_2 B_1$ Terima Ho jika; F_{hitung} $< F_{tabel}$	Ho: Tidak Terdapat perbedaan kemampuan penalaran matematis siswa yang diajar menggunakan model pembelajaran problem based learning dan matematika realistik di kelas VIII MTs. Manunggal BDR Khalipah Deli Serdang. • Ha : Terdapat perbedaan kemampuan penalaran matematis siswa yang diajar menggunakan model pembelajaran problem based learning dan matematika realistik di kelas VIII	pat laan keseluruhan kemampuan penalaran matematis siswa diajar dengan model pembelajaran problem based learning k di kelas MTs. ggal BDR ah Deli Seesluruhan kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran problem based learning lebih baik daripada siswa yang diajar dengan
		MTs. Manunggal BDR Khalipah Deli Serdang.	linier dua variabel.
2	Ho: $\mu A_1 B_2 = \mu A_2 B_2$	• Ho: Tidak terdapat Terda perbedaan kemampuan perbed	

3	Ha: $\mu A_1 B_2 \neq \mu A_2 B_2$ Terima H _o , jika: F _{hitung} < F _{tabel} Ho: $\mu A_1 B_1 = \mu A_1 B_2$ Ha: $\mu A_1 B_1 \neq \mu A_1 B_2$ Terima H _o jika; F _{hitung} < F _{tabel}	pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran problem based learning dan matematika realistik di kelas VIII MTs. Manunggal BDR Khalipah Deli Serdang. Ha: Terdapat perbedaan kemampuan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran problem based learning dan matematika realistik di kelas VIII MTs. Manunggal BDR Khalipah Deli Serdang. Ho: Tidak terdapat perbedaan kemampuan penalaran dan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran problem based learning di kelas VIII MTs. Manunggal BDR Khalipah Deli Serdang. • Ha: Terdapat perbedaan kemampuan penalaran dan pemecahan masalah matematis siswa yang diajar menggunakan masalah matematis siswa yang diajar menggunakan menggunakan menggunakan menggunakan menggunakan	Khalipah Deli Serdang. Terdapat perbedaan kemampuan penalaran dan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran problem based learning di kelas VIII MTs. Manunggal	kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran problem based learning lebih baik daripada siswa yang diajar dengan model Pembelajaran matematika realistik pada materi sistem persamaan linier dua variabel. Secara keseluruhan kemampuan penalaran matematis siswa yang diajar dengan model pembelajaran matematis siswa yang diajar dengan model pembelajara n problem based learning lebih baik kemampuan
	UNIVER	pemecahan masalah matematis siswa yang	learning di kelas VIII MTs. Manunggal BDR Khalipah Deli Serdang.	lebih baik
SU	JMATER	A UTARA	MEDA	pembelajara n problem based learning.
4	Ho : $\mu A_1 B_2 = \mu A_2 B_2$ Ha : $\mu A_1 B_2 \neq \mu A_2 B_2$	Ho: Tidak terdapat perbedaan kemampuan penalaran dan pemecahan masalah matematis siswa yang diajar menggunakan	• Terdapat perbedaan kemampuan penalaran dan pemecahan masalah matematis siswa	Secara keseluruhan kemampuan penalaran matematis siswa yang diajar
		model pembelajaran	yang diajar menggunakan	dengan model

		matematika realistik di	model	pembelajara	
		kelas VIII MTs.	pembelajaran matematika	n	
				matematika	
		Manunggal BDR	realistik di kelas	realistik	
		Khalipah Deli Serdang.	VIII MTs.	lebih baik	
		• H _a = Terdapat perbedaan	Manunggal BDR Khalipah Deli	kemampuan pemecahan	
		kemampuan penalaran	Serdang.	masalah	
		dan		matematis	
		pemecahan masalah		yang diajar	
		matematis siswa yang		menggunaka	
		diajar menggunakan model		n model	
		pembelajaran matematika		pembelajara	
		realistik di kelas VIII		n	
		MTs. Manung <mark>g</mark> al BDR		matematika	
		Khalipah Deli S <mark>e</mark> rdang		realistik.	

Simpulan : Siswa yang memiliki kemampuan penalaran matematis dan kemampuan pemecahan masalah matematis lebih sesuai diajarkan dengan model Pembelajaran *problem based learning* daripada model pembelajaran matematika realistik

D. Pembahasan Hasil Penelitian

Pada bagian ini diuraikan deskripsi dan interpretasi data hasil penelitian.

Deskripsi dan interpretasi dilakukan terhadap kemampuan penalaran matematis dan kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan siswa yang diajar dengan model Pembelajaran matematika realistik.

1. Temuan hipotesis pertama memberikan kesimpulan bahwa: **terdapat perbedaan** kemampuan penalaran matematis siswa yang diajar menggunakan model pembelajaran *problem based learning* dan matematika realistik di kelas

VIII MTs. Manunggal BDR Khalipah Deli Serdang. Kemampuan penalaran matematis siswa lebih baik diajar menggunakan model pembelajaran *problem based learning* daripada model pembelajaran matematika realistik. Hal ini sesuai dengan yang dikemukakan oleh Elda Freza Simbolon dengan judul Perbedaan Model Pembelajaran *Problem Based Learning* Terhadap Kemampuan Penalaran Matematis Siswa. Hasil penelitian menunjukkan

bahwa berdasarkan pendapat para peneliti dalam penelitian masing-masing yang dikutip dapat disimpulkan bahwa model pembelajaran *Problem Based Learning* (PBL) mempengaruhi kemampuan penalaran matematis siswa. Oleh karena itu, untuk meraih tujuan personal mereka, anggota kelompok harus membantu teman satu timnya untuk melakukan apapun guna membuat kelompok mereka berhasil, dan mungkin yang lebih penting, mendorong anggota satu kelompoknya untuk melakukan usaha maksimal. Dengan kata lain, penghargaan kelompok yang didasarkan pada kinerja kelompok (atau penjumlahan dari kinerja individual) menciptakan struktur penghargaan interpersonal di mana anggota kelompok akan memberikan atau menghalangi pemicu-pemicu sosial (seperti pujian dan dorongan) dalam merespons usaha-usaha yang berhubungan dengan tugas kelompok.⁴⁶

Dengan demikian, antara satu siswa dengan siswa yang lain dalam kelompok dapat memberikan jawabannya dengan caranya sendiri-sendiri. Tanpa disadari siswa telah melakukan aktivitas penalaran matematis, karena masing-masing siswa akan berusaha untuk menjawab pertanyaan dengan cara yang berbeda dengan temannya disamping itu juga memperhatikan kualitas jawaban yang di berikan.

Dalam proses belajar mengajar diharapkan adanya komunikasi banyak arah yang memungkinkan akan terjadinya aktivitas dan kreativitas atau daya penalaran matematis yang diharapkan. Kreativitas sebagai satu dimensi aktualisasi dari berpikir ilmiah, maka sangat memberikan sumbangan besar bagi upaya pengenalan, pemahaman, pengembangan individu yang inovatif,

_

⁴⁶Robert Slavin. E. Slavin, op. cit., hal. 34

dinamis, dan bertanggungjawab. Hal ini dapat dilihat dalam model pembelajaran problem based learning bahwa dalam problem based learning, siswa di tuntut untuk paham dan mengerti secara individu dan kelompok. Jadi dalam pembelajaran ini siswa berinteraksi dengan teman dengan cara berdiskusi dan bertukar jawaban untuk merealisasikan tanggung jawabnya sebagai anggota dari kelomponya. Dengan adanya diskusi dan kegiatan tukar jawaban akan membantu siswa untuk mendapatkan jawaban yang bervariasi dan beragam. Hal ini pula yang mendorong siswa untuk penalaran matematis yaitu mendapatkan jawaban dengan cara yang bervariasi dari apa yang telah di dapatkannya.

2. Temuan hipotesis kedua memberikan kesimpulan bahwa: terdapat perbedaan kemampuan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran problem based learning dan matematika realistik di kelas VIII MTs. Manunggal BDR Khalipah Deli Serdang. Kemampuan penalaran matematis siswa lebih baik diajar menggunakan model pembelajaran problem based learning daripada model pembelajaran matematika realistik. Hal ini sesuai dengan dengan hasil penelitian Yuliner dan Suherman (2019) yang berjudul Perbedaan Pembelajaran PBL Terhadap Kemampuan Pemecahan Masalah Matematika Siswa Kelas XI MIA SMA Negeri 7 Padang. Hasil penelitian menunjukkan bahwa kemampuan pemecahan masalah matematis peserta didik yang diajarkan dengan model pembelajaran PBL lebih baik daripada kemampuan pemecahan masalah matematis yang diajar dengan model pembelajaran langsung pada kelas XI MIA SMA 7 Padang. Hal ini memberikan arti bahwa pembelajaran kooperatif

dapat memudahkan siswa dalam meyelesaikan sebuah permasalahan dengan cara berdiskusi. Pemecahan masalah dianggap merupakan standar kemampuan yang harus dimiliki para siswa setelah menyelesaikan suatu pembelajaran. Kemampuan pemecahan masalah merupakan kemampuan yang merupakan target pembelajaran matematika yang sangat berguna bagi siswa dalam kehidupannya. Hal ini dikarenakan dengan adanya kemampuan pemecahan masalah yang di berikan siswa, maka menunjukkan bahwa suatu pembelajaran telah mampu atau berhasil membantu siswa untuk mencapai tujuan yang akan dicapai.

Pembelajaran kooperatif sendiri merupakan pembelajaran yang dikembangkan berdasarkan teori kontruktivisme salah satunya model pembelajaran *problem based learning*. Para siswa bekerja dalam kelompok dan bertukar jawaban, mendiskusikan ketidaksamaan, dan mereka bisa mendiskusikan pendekatan-pendekatan untuk memecahkan suatu masalah atau saling memberikan pertanyaan tentang isi dari meteri pelajaran.

3. Temuan hipotesis ketiga memberikan kesimpulan bahwa: **terdapat perbedaan** kemampuan penalaran dan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran *problem based learning* di kelas VIII MTs. Manunggal BDR Khalipah Deli Serdang. Kemampuan penalaran matematis yang diajar menggunakan model pembelajaran *problem based learning* lebih baik dari kemampuan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran *problem based learning*. Hal ini sesuai dengan jawaban hipotesis pertama yang di uraikan sebelumnya.

4. Temuan hipotesis ketiga memberikan kesimpulan bahwa: terdapat perbedaan kemampuan penalaran dan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran matematika realistik di kelas VIII MTs. Manunggal BDR Khalipah Deli Serdang. Kemampuan penalaran matematis yang diajar menggunakan model pembelajaran matematika realistik lebih baik dari kemampuan pemecahan masalah matematis siswa yang diajar menggunakan model pembelajaran matematika realistik. Hal ini sesuai dengan hasil temuan Sendi Fauzan dan Rika Muliati Sari (2018) yang berjudul Upaya Meningkatkan Kemampuan Penalaran Matematis dengan Pendekatan Realistic Matematika Education pada Siswa Kelas VII SMP N 1 Karawang Barat. Hasil penelitian menunjukkan bahwa peningkatan kemampuan penalaran matematis siswa yang menggunakan pendekatan pembelajaran Realistic Matematika Education lebih baik daripada siswa yang diajarkan dengan pembelajaran langsung. Peningkatan kemampuan penalaran matematis siswa dengan pendekatan pembelajara RME tergolong sedang, sedangkan peningkatan kemampuan penalaran matematis siswa secara langsung tergolong rendah. Berdasarkan pembelajaran matematika realistik mengadopsi pemasalahan di sekeliling menjadi pembelajaran matematika membuat rangsangan terhadap kemampuan penalaran siswa. Dari kejadian-kejadian sekeliling yang dapat dijadikan studi kasus, membuat siswa menalarkan masalah tersebut ke bentuk matematika.

E. Keterbatasan dan Kelemahan

Sebelum kesimpulan hasil penelitian di kemukakan, terlebih dahulu di utarakan keterbatasan maupun kelemahan-kelemahan yang yang ada pada penelitian ini. Hal ini diperlukan, agar tidak terjadi kesalahan dalam memanfaatkan hasil penelitian ini.

Penelitian yang mendeskripsikan tentang perbedaan kemampuan penalaran matematis dan kemampuan pemecahan masalah matematis siswa yang diajar dengan model pembelajaran *problem based learning* dan pembelajaran matematika realistik. Dalam penelitian ini, peneliti hanya membatasi pada materi sistem persamaan linier dua variabel khususnya sub materi keliling dan luas sistem persamaan linier dua variabel, dan tidak membahas kemampuan penalaran matematis dan kemampuan pemecahan masalah siswa pada sub materiyang lain pada sistem persamaan linier dua variabel. Ini merupakan salah satu keterbatasan dan kelemahan peneliti.

Dalam belajar matematika, banyak hal-hal yang mendukung kegiatan penalaran matematis dan pemecahan masalah matematika siswa, salah satunya yaitu strategi pembelajaran yang digunakan. Pada penelitian ini peneliti hanya melihat kemampuan penalaran matematis dan kemampuan pemecahan masalah matematika siswa dengan menggunakan model pembelajaran *problem based learning* dan Pembelajaran matematika realistik tidak pada pembelajaran yang lain. Kemudian pada saat penelitian berlangsung peneliti sudah semaksimal mungkin melakukan pengawasan pada saat postes berlangsung, namun jika ada kecurangan yang terjadi di luar pengawasan peneliti seperti adanya siswa yang mencontek temannya itu merupakan suatu kelemahan dan keterbatasan peneliti.