BAB IV HASIL DAN PEMBAHASAN

Telah dilakukan penelitian mengenai Perhitungan Sifat Elektronik LiBX₃ (B = Pb dan Sn; X = Br, Cl dan I) Fase Kubik Dengan Metode *Density Functional Theory*. Perhitungan yang digunakan dalam penelitian ini menggunakan jenis *pseudopotensial* yang digunakan adalah *Semi Local Norm Conserving* dengan *Generalized Gradient Approximation Perdew Burke Enzerhof exchange correlation functional* (GGA-PBE).

4.1 Variasi Parameter Perhitungan

Adapun variasi parameter perhitungan yang dilakukan untuk *Perovskite* Elektronik LiBX₃ (B = Pb dan Sn; X = Br, Cl dan I) Fase Kubik Dengan Metode *density functional theory* adalah sebagai berikut:

4.1.1 Energi Cut-off

Pengaturan energi *cut-off* merupakan langkah krusial dalam perhitungan berbasis teori fungsional kerapatan (DFT) menggunakan *Quantum ESPRESSO*. Semakin besar grid akan membuat perhitungan semakin teliti namun waktu yang diperlukan pun semakin lama. Dalam perhitungan ini akan menggunakan energi *cut-off* mulai dari 10Ry hingga 150Ry sedangkan energi *cut-rho* merupakan *charge density* dan potensial sementara untuk nilainya adalah nilai energi *cut-off*×8 (Suprayoga dkk., 2021). Berikut adalah tabel untuk hasil perhitungan energi *cut-off* LiPbBr₃, LiPbCl₃, LiPbl₃, LiSnBr₃, LiSnCl₃, dan LiSnl₃.

Tabel 4.1 Hasil Perhitungan Energi Cut-off LiPbBr3, LiPbCl3, LiPbl3, LiSnBr3,

LiSnCl₃, dan LiSnl₃

Perovskite	Ecutwfc	ecutrho	Etot	t
	(Ry)	(Ry)	(Ry)	
	10	80	-215,27009089	3,44s
	20	160	-230,08879959	19,38s
	30	240	-231,56862244	44,99s
	40	320	-231,62445515	50,97s

	50	400	-231,63643360	3m19,06s
	60	480	-231.63756816	4m18,50s
LiPbBr ₃	70	560	-231.63867608	4m35.30s
- 0	80	640	-231.63948663	3m39.525
	90	720	-231.63984744	4m14.57s
	100	800	-231 63946889	5m12 27s
	110	880	-231 63985378	6m54 65s
	120	960	-231 63985470	9m
	130	1 040	-231 63987253	9m31 07s
	140	1 1 2 0	-231 63947487	13m
	150	1 200	-231 63987253	6m50 39s
	10	80	-224 79914065	3.06s
	20	160	-239 60613637	11 67s
	30	240	-241 12051092	2772s
	30 40	320	-241,12031092	41.82s
	40 50	400	-241,17729409	1m14.48s
	50 60	480	-241,19935513	1m14,403 1m11.01s
LiPhCla	00 70	560	-241,17713515	1m11,013 1m40,33s
LII UCI3	80	640	-241,20000000	1m+7,555 1m53.66s
	90	720	-241,20042080	7m
	100	800	-241,20077782	3m29.98s
	110	880	-241,20138130 -241,20147331	3m23,00s
	120	960	-241,20147331 -241,20145312	/m
	130	1.040	-241,20145512	3m30.18s
	140	1.040	-241,20144317	4m45,71s
	140	1.120	-241,20140207	41114 <i>J</i> ,/15
	10	80	-241,20140852	3 /85
	20	160	203,02701032	15 600
	20	240	210,30867364	28.035
	40	320	-219,30007304	20,753 38 10s
	40 50	400	210,35048603	16 00s
	60 UNIV	400	-219,35948005	1m
L iPhl ₂	SU 70 ATE	560 AR	-219,30137720	1m35.03s
LII OIJ	80	640	-219,36184572	1m53,055 1m53,39s
	90	720	-219,36193941	1m55,575 1m56,17s
	100	800	-219,36195482	2m29.63s
	110	880	-219,36192713	3m11 37s
	120	960	-219,30192713	4m5973s
	120	1.040	-219,30191112	4m36.03s
	140	1.040	210,36100817	5m16.17s
	140	1.120	-219,3019001/	5m10,178
	10	1.200 QA	-217,30171102 87 56071177	5m 1.65a
	20	00 160	-07,30921177	1/ 200
	20	240	-00,55101052 88 20042005	14,208 22 26a
	30 40	∠40 220	-00,37042003	22,308 12.04a
	40	520 400	-00,40/30439	42,948 54.06a
	30	400	-00,41040984	J4,90S

	60	480	-88,42002512	1m
LiSnBr ₃	70	560	-88,42069225	2m
	80	640	-88,42145918	2m51,36s
	90	720	-88,42175881	2m49,87s
	100	800	-88,42179595	3m
	110	880	-88,42181548	6m26,49s
	120	960	-88,42185500	4m12,04s
	130	1.040	-88,42188305	4m11,94s
	140	1.120	-88,42189220	6m16,21s
	150	1.200	-88,42189293	5m20,85s
	10	80	-97,05270794	1,87s
	20	160	-97,81719234	9,62s
	30	240	-97,89211918	16,02s
	40	320	-97,91006041	26,50s
	50	400	-97,92500100	38,14s
	60	480	-97,93105558	44,51s
LiSnCl ₃	70	560	-97,93218177	1m10,77s
	80	640	-97,93248290	1m17,03s
	90	720	-97,93295406	1m36,95s
	100	800	-97,93335315	1m54,21s
	110	880	-97,93352742	2m
	120	960	-97,93356294	2m39,95s
	130	1.040	-97,93356982	2m41,475
	140	1.120	-97,93358627	2m40,645
	150	1.200	-97,93360418	2m52,13s
	10	80	-75,74485127	1,66s
	20	160	-76,16640807	6,41s
	30	240	-76,22070150	11,00s
	40	320	-76,23036872	25,10s
LiSnl ₃	50	400	-76,23225516	29,59s
	60	480	-76,23344792	37,69s
	70	560	-76,23362971	44,05s
	80	640 A	-76,23370012	53,27s
	90	720	-76,23376165	1m
	100	800	-76,23377449	1,66s
	110	880	-76,23377747	1m5,40s
	120	960	-76,23378222	1m20,22s
	130	1.040	-76,23378390	1m24,95s
	140	1.120	-76,23378419	1m27,99s
	150	1.200	-76,23378466	1m43,37s

Maka dapat dilihat dari tabel diatas energi *cut-off* yang dapat digunakankan untuk LiPbBr₃ 90 Ry dengan energi *cut-rho* 720 Ry, untuk LiPbCl₃ 110 Ry dengan energi *cut-rho* 880 Ry, untuk LiPbl₃ 90 Ry dengan energi *cut-rho* 720 Ry, untuk LiSnBr₃ 80 Ry dengan energi *cut-rho* 640 Ry, untuk LiSnCl₃ 110 Ry dengan energi *cut-rho* 880 Ry dan untuk LiSnl₃ 60 Ry dengan energi *cut-rho* 480 Ry. Pemilihan energi *cut-off* untuk *perovskite* LiPbCl₃, LiPbl₃, LiSnCl₃, dan LiSnl₃ mengacu kenilai energi totalnya yang sudah presisi 4 angka dibelakang koma. Sedangkan untuk *perovskite* LiPbBr₃ dan LiSnBr₃ dipilih berdasarkan nilai energi totalnya yang sudah presisi 3 angka dibelakang koma. Presisi 4 angka dibelakang koma tidak dipilih karena semakin lama waktu perhitungan yang akan dilakukan. Seperti yang diketahui bahwasanya semakin besar nilai energi *cut-off* akan membuat perhitungan semakin teliti namun waktu yang diperlukan pun semakin lama (Shanaz, 2019).

4.1.2 *K-Point*

Perhitungan *k-point* adalah untuk menyampel Ruang Brillouin, yang mewakili semua kemungkinan momentum elektron dalam kristal. Pemilihan grid *k-point* yang baik dan cukup padat meningkatkan akurasi energi total, band structure, dan *density of states* (DOS) sambil menyeimbangkan efisiensi komputasi. Grid *k-point* yang optimal memastikan hasil perhitungan konvergen dan tidak berubah signifikan dengan peningkatan jumlah *k-point*. Selain itu, *k-point* mempengaruhi deskripsi interaksi elektron dalam material, yang penting untuk memahami sifat elektronik, optik, dan transportasi. Oleh karena itu, perhitungan *k-point* sangat penting untuk mendapatkan gambaran yang akurat dan efisien dari sifat-sifat elektronik suatu material.Dalam perhitungan ini akan menggunakan *k-point* mulai dari 1×1×1 hingga 10×10×10 dengan shift 0 0 0. Berikut adalah tabel untuk hasil perhitungan *k-point* LiPbBr₃, LiPbCl₃, LiPbCl₃, LiSnBr₃, LiSnBr₃,

Perovskite	K-point	Etot	t
		(R y)	
	1×1×1	-232,08615901	46,37s
	$2 \times 2 \times 2$	-231,52297054	1m16,42s
	$3 \times 3 \times 3$	-231,69021300	1m21,81s

1	T 'O	1
dan	LISH	3

	$4 \times 4 \times 4$	-231,63975092	3m52,64s
LiPbBr ₃	$5 \times 5 \times 5$	-231,66245960	2m26,98s
	6×6×6	-231,65384130	4m18,97s
	$7 \times 7 \times 7$	-231,65787524	4m52,18s
	$8 \times 8 \times 8$	-231,65577626	9m34,50s
	9×9×9	-231,65693787	8m31,85s
	10×10×10	-231.65631430	15m5.18s
	1×1×1	-241.61752612	45.06s
	$2 \times 2 \times 2$	-241 11352551	1m57.57s
	$\overline{3\times3\times3}$	-241 22819509	1m22.09s
	$4 \times 4 \times 4$	-241 20139474	4m
LiPhCl ₂	5×5×5	-241 21105358	2m57.41s
LII UCIS	6×6×6	-241,21105550	5m31.22s
	$7 \times 7 \times 7$	241,20742000	4m50.78s
	9×9×9	241,20000400	$\frac{4113}{780}$
	0~0~0	-241,20820013	8m17.00c
	10×10×10	-241,20037972	12m5952a
	1×1×1	-241,20841804	21 20
	1×1×1	-219,75700020	21,398
	2×2×2	-219,18233303	50.12-
	3×3×3	-219,43/19318	50,128
T 'D1 1	4×4×4	-219,36188915	2m20,72s
L1PDI3	2×2×2	-219,3988/968	2m
	6×6×6	-219,38034192	5m26,28s
	/×/×/	-219,3914/336	3m45,89s
	8×8×8	-219,38460794	llm
	9×9×9	-219,38955629	6m23,05s
	$10 \times 10 \times 10$	-219,38655980	14m27,14s
	$1 \times 1 \times 1$	-88,73668755	22,34s
	$2 \times 2 \times 2$	-88,30626859	40,80s
	$3 \times 3 \times 3$	-88,46975638	34,91s
	$4 \times 4 \times 4$	-88,42145690	2m57,17s
LiSnBr ₃	$5 \times 5 \times 5$	-88,44473706	1m16,52s
SUW/	6×6×6	-88,43425750	2m15,55s
	$7 \times 7 \times 7$	-88,44013329	3m12,52s
	$8 \times 8 \times 8$	-88,43715768	3m55,02s
	9×9×9	-88,43899067	5m23,65s
	10×10×10	-88,43786344	11m24,19s
	$1 \times 1 \times 1$	-98,25359758	16,59s
	$2 \times 2 \times 2$	-97,85228776	1m27,04s
	3×3×3	-97,96211363	31,12s
	$4 \times 4 \times 4$	-97,93352437	2m
LiSnCl ₃	$5 \times 5 \times 5$	-97,94544889	1m10.27s
	6×6×6	-97,94053060	3m
	7×7×7	-97 94304386	2m24.79s
	8×8×8	-97 94178456	5m57 95s
	9×9×9	-97 94250680	3m57.60c
	$10 \times 10 \times 10$	_97 9420000	5m37 34
	1×1×1	-76 /7007261	2 2 2 7 a
	1~1~1	-/0,4/002301	0,028

	$2 \times 2 \times 2$	-76,09398705	16,43s
	$3 \times 3 \times 3$	-76,29678780	16,50s
	$4 \times 4 \times 4$	-76,23344533	31,66s
LiSnl ₃	$5 \times 5 \times 5$	-76,26503114	38,65s
	6×6×6	-76,24786498	1m38,07s
	$7 \times 7 \times 7$	-76,25860532	1m
	$8 \times 8 \times 8$	-76,25176169	3m24,11s
	9×9×9	-76,25680673	1m50,94s
	10×10×10	-76,25379075	2m44,67s

Maka dapat dilihat dari tabel diatas *k-point* yang dapat digunakankan untuk LiPbBr₃ adalah *k-point* 7×7×7, untuk LiPbCl₃ adalah *k-point* 7×7×7, untuk LiPbl₃ adalah *k-point* 9×9×9, untuk LiSnBr₃ adalah *k-point* 8×8×8, untuk LiSnCl₃ adalah *k-point* 9×9×9, dan untuk LiSnl₃ adalah *k-point* 7×7×7. Pemilihan nilai *k-point* untuk *provskite* LiPbCl₃ dan LiSnCl₃ mengacu ke energi total yang sudah presisi 3 angka dibelakang koma. Sedangkan untuk *perovskite* LiPbBr₃, LiPbl₃, LiSnBr₃, dan LiSnl₃ mengacu ke energi total yang sudah presisi 2 angka dibelakang koma atau waktu yang masih memumpuni untuk perhitungan selanjutnya. Seperti yang diketahui bahwasanya semakin besar nilai *k-point* akan membuat perhitungan semakin teliti namun waktu yang diperlukan pun semakin lama (Shanaz, 2019).

4.1.3 Vc-Relax

Penentuan konstanta kisi optimum dicapai dengan mengamati hasil yang menunjukkan nilai konvergen dengan energi total minimum. Energi total minimum ini menunjukkan keadaan bahan yang paling stabil. Oleh karena itu, struktur dengan energi total minimum memiliki keadaan paling seimbang. Hasil optimasi parameter kisi ini kemudian digunakan untuk menghitung struktur elektronik material tersebut. Untuk melihat perubahan pada konstanta kisi, file input dan output dari perhitungan dimasukkan ke dalam software XCrysDen. Berikut adalah perubahannya dapat dilihat gambar dibawah ini:

(a)

Gambar 4.1 Konstanta Kisi LiPbBr₃, LiPbCl₃, LiPbl₃, LiSnBr₃, LiSnCl₃, dan LiSnl₃ (a) Input awal dan (b) setelah perhitungan *Vc-Relax*

Pada Tabel 4.1, konstanta kisi awalnya adalah 5 Å. Setelah dilakukan perhitungan *vc-relax*, konstanta kisi akan meningkat hingga mendapatkan konstanta kisi optimum. Karena saat nilai konstanta kisa potimum dimasukkan ke dalam file input selanjutnya, nilai energi total tidak berubah. Berikut adalah tabel perhitungan *vc-relax* yang dapat dilihat dibawah ini:

Tabel 4.3 Hasil Perhitungan Konstanta Kisi LiPbBr3, LiPbCl3, LiPbl3, LiSnBr3,

Perovskite	a	a relaksasi	Etot
	(Å)	(Å)	(R y)
LiPbBr ₃	5	5,93633	-232,02435643
	5,93633	5,9374468	-231,02435842
	5,9374468	<mark>5</mark> ,938097271	-231,02435895
	5,938097271	5,938097271	-231,02435896
LiPbCl ₃	5	5,66261565	-241,38321330
	5,66261565	5,66261565	-241,38321314
LiPbl ₃	5	6,318017795	-220,17100591
	6,318017795	6,320719764	-220,17101456
	6,320719764	6,320719764	-220,17101310
LiSnBr ₃	5	5,802860265	-88,68226622
	5,802860265	5,802860265	-88,68226595
LiSnCl ₃	UNIVERSITAS	5,52314702	-98,04223219
SUN	5,52314702	5,52314702	-98,04223205
LiSnl ₃	5	6,172540685	-76,83039791
	6,172540685	6,17402668	-76,83040165
	6,17402668	6,1752595353	-76,83040409
	6,1752595353	6,1752595353	-76,83040409

LiSnCl₃, dan LiSnl₃

Maka dari tabel diatas konstanta kisi yang digunakan untuk LiPbBr₃ adalah 5,938 Å, LiPbCl₃ adalah 5,662 Å, LiPbl₃ adalah 6,321 Å, LiSnBr₃ adalah 5,802 Å, LiSnCl₃ adalah 5,523 Å, dan LiSnl3 adalah 6,175 Å. Berikut tabel adalah perbandingan antara konstanta kisi penelitian dengan konstanta kisi referensi:

Perovskite	Konstanta Kisi Perhitungan (Å)	Konstanta Kisi Referensi (Pitriana, 2019) (Å)	Persentase Galat (%)
LiPbBr ₃	5,938	5,928	0,168
LiPbI ₃	6,321	6,321	0
LiSnI ₃	6,175	6,158	0,276

Tabel 4.4 Perbandingan Konstanta Kisi

Dari tabel diatas dapat disimpulkan bahwa konstanta kisi secara perhitungan dengan konstanta kisi referensi memiliki nilai yang tidak jauh berbeda dan dapat dilihat dari hasil persentase galatnya yang kecil.

4.1.4 Struktur Elektronik

4.1.4.1 Hasil Band Structure dan Density of States (DOS)

Berikut adalah gambar dari *Band Structure* dan *Density of States* (DOS) untuk LiPbBr₃, LiPbCl₃, LiPbl₃, LiSnBr₃, LiSnCl₃, dan LiSnl₃:

(c)

(d)

1

4 4

2

E-6+(eV) 4

010 - 12 - 20 U

(UPb)?

DSHE

N-14H

Gambar 4.2 Hasil Band Structure dan Density of States (DOS) (a) LiPbBr₃, (b) LiPbCl₃, (c) LiPbl₃, (d) LiSnBr₃, (e) LiSnCl₃, dan (f) LiSnl₃

Dari struktur pita elektronik yang ditunjukan pada Gambar 4.2 bagian kiri menunjukan struktur pita elektronik sedangkan bagian kanan menunjukan *Density* of States. Struktur pita elektronik menggambarkan bagaimana energi elektron dalam material bergantung pada bilangan gelombang *k*, menunjukkan rentang energi yang diizinkan dan tidak diizinkan bagi elektron. *Density of States* (DOS) adalah fungsi yang menunjukkan jumlah keadaan elektron yang tersedia pada setiap tingkat energi. Kesesuaian antara struktur pita elektronik dan DOS terlihat dari bagaimana pita konduksi dan pita valensi pada grafik struktur pita elektronik berkorelasi dengan puncak atau peningkatan dalam DOS, menunjukkan banyaknya tingkat energi yang bisa ditempati oleh elektron. Sebaliknya, gap energi pada struktur pita elektronik tercermin dalam DOS sebagai daerah dengan nilai nol atau sangat rendah, menunjukkan tidak adanya keadaan yang bisa ditempati oleh elektron.

Pita valensi merupakan pita yang terisi penuh dengan elektron. Pada Gambar 4.2 pita valensi berada dibawah energi Fermi (E_F), sedangkan pita konduksi berada diatas Ef. Selisih energi dari pita struktur elektronik dengan E_F (E_F) menyebabkan energi fermi (E_F) berada di nilai 0. Berikut adalah tabel hasil dari nilai celah pita energi yang dapat dilihat dibawah ini:

Perovskite	Eg Penelitian
	(eV)
LiPbBr ₃	IS ISLAM NI IÇ71 RI
LiPbCl ₃	UTARA1,87EDAN
LiPbI3	1,43
LiSnBr ₃	0,51
LiSnCl ₃	0,65
LiSnI ₃	0,29

Tabel 4.5 Nilai Celah Pita Energi

Dan dapat disimpulkan dari penelitian yang telah dilakukan pada grafik struktur pita elektronik dengan DOS menyatakan nilai celah pita energi semakin besar (0.28 eV-1.87 eV) dengan perubahan jari-jari atom yang semakin besar dari Sn ke Pb dan nilai celah pita energi semakin kecil (1,87 eV-1,43 eV dan 0,65 eV-0,28 eV) dengan perubahan jari-jari yang semakin besar dari Cl, Br ke I. Merujuk pada batas Shockley-Queisser (Shockley & Queisser, 1961) bahan yang digunakan sebagai bahan penyerapan cahaya yang efektif dengan tingkat efisiensi konversi daya PCE hingga 35% bisa dicapai oleh divais sel surya sambungan p-n dengan besar cela pita energi sebesar 1,34 eV, maka *perovskite* LiPbX₃ (LiPbBr₃, LiPbCl₃, dan LiPbI₃) berpeluang menjadi bahan penyerapan cahaya dengan efesiensi konversi energi yang besar. Berikut adalah perbandingan antara celah pita energi perhitungan dengan celah pita energi referensi:

Perovskite	Eg Perhitungan (eV)	Eg Referensi (Pitriana, 2019) (eV)	Persentase Galat (%)
LiPbBr ₃	1,71	1,708	0,117
LiPbI ₃	1,43	1,400	2,142
LiSnI ₃	0,29	0,287	1,045

Tabel 4.6 Perbandingan C	Celah Pita	Energi
--------------------------	------------	--------

Dari tabel diatas jika dibandingkan dengan penelitian terdahulu (Pina Pitriana, 2019) yang berjudul *Kajian Pengaruh Kation dan Anion Penyusun dari Bahan Perovskit Berbasis Logam Halida pada Struktur Elektroniknya Melalui Perhitungan dengan Metode Density Fungtional Theory*, dapat disimpulkan bahwa nilai celah pita energi (Eg) secara perhitungan dengan nilai celah pita energi (Eg) referensi memiliki nilai yang tidak jauh berbeda dan dapat dilihat dari hasil persentase galatnya yang kecil.

4.1.4.2 Hasil Projected Density of States (PDOS)

Berikut adalah gambar dari *Projected Density of States* (PDOS) untuk LiPbBr₃, LiPbCl₃, LiPbl₃, LiSnBr₃, LiSnCl₃, dan LiSnl₃:

Gambar 4.3 Hasil Projected Density of States (PDOS) (a) LiPbBr₃, (b) LiPbCl₃,
(c) LiPbl₃, (d) LiSnBr₃, (e) LiSnCl₃, dan (f) LiSnl₃

Kurva DOS pada Gambar 4.2 di sebelah kanan menunjukkan kerapatan total elektron tanpa memberikan informasi tentang jenis elektron yang berperan dalam pembentukan state tersebut. Untuk mendapatkan informasi tersebut, dilakukan perhitungan PDOS. Kurva PDOS untuk LiPbBr3 fase kubik terdiri dari orbital Li2s, Li_{2p}, Li_{3d}, Li_{4f}, Pb_{6s}, Pb_{6p}, Pb_{6d}, Pb_{5f}, Br_{4s}, Br_{4p}, Br_{4d}, dan Br_{4f}. Dari semua orbital tersebut, pita valensi dominan terisi oleh orbital Br4p dan Pb6s, sementara pita konduksi dominan terisi oleh Li_{2s} dan Pb_{6p}. Untuk LiPbCl₃ fase kubik terdiri dari orbital Li2s, Li2p, Li3d, Li4f, Pb6s, Pb6p, Pb6d, Pb5f, Cl3s, Cl3p, Cl3d, dan Cl4f. Dari semua orbital tersebut, pita valensi dominan terisi oleh orbital Cl_{3p} dan Pb_{6s}, sementara pita konduksi dominan terisi oleh Li_{2s} dan Pb_{6p}. Untuk LiPbI₃ fase kubik terdiri dari orbital Li_{2s}, Li_{2p}, Li_{3d}, Li_{4f}, Pb_{6s}, Pb_{6p}, Pb_{6d}, Pb_{5f}, I_{5s}, I_{5p}, I_{5d}, dan I_{4f}. Dari semua orbital tersebut, pita valensi dominan terisi oleh orbital I5p, dan Pb6s, sementara pita konduksi dominan terisi oleh Li_{2s} dan Pb_{6p}. Kurva PDOS untuk LiSnBr3 fase kubik terdiri dari orbital Li2s, Li2p, Li3d, Li4f, Sn5s, Sn5p, Sn5d, Sn4f, Br4s, Br_{4p}, Br_{4d}, dan Br_{4f}. Dari semua orbital tersebut, pita valensi dominan terisi oleh orbital Br_{4p} dan Sn_{5s}, sementara pita konduksi dominan terisi oleh Li_{2s} dan Sn_{5p}. Untuk LiSnCl₃ fase kubik terdiri dari orbital Li_{2s}, Li_{2p}, Li_{3d}, Li_{4f}, Sn_{5s}, Sn_{5p}, Sn_{5d}, Sn_{4f}, Cl_{3s}, Cl_{3p}, Cl_{3d}, dan Cl_{4f}. Dari semua orbital tersebut, pita valensi dominan terisi oleh orbital Cl_{3p} dan Sn_{5s}, sementara pita konduksi dominan terisi oleh Li_{2s} dan Sn_{5p}. Untuk LiSnI₃ fase kubik terdiri dari orbital Li_{2s}, Li_{2p}, Li_{3d}, Li_{4f}, Sn_{5s}, Sn_{5p}, Sn_{5d}, Sn_{4f}, I_{5s}, I_{5p}, I_{5d}, dan I_{4f}. Dari semua orbital tersebut, pita valensi dominan terisi oleh orbital I_{5p}, dan Sn_{5s}, sementara pita konduksi dominan terisi oleh Li_{2s} dan Sn_{5p}. Sn_{5d}, Sn_{4f}, I_{5s}, I_{5p}, I_{5d}, dan I_{4f}. Dari semua orbital tersebut, pita valensi dominan terisi oleh orbital I_{5p}, dan Sn_{5s}, sementara pita konduksi dominan terisi oleh Li_{2s} dan Sn_{5p}. Dapat disimpulkan bahwa antara atom A, B, dan X, semua ikut berperan dalam pembentukan celah pita energi. Dimana atom A sebagai pembentuk pita konduksi dan X sebagai pembentuk pita valensi, dan atom A dan X mendominasi dalam pembentukan celah pita energi sedangkan atom B juga ikut berperan dalam sembentuk pita valensi dan pita konduksi tetapi hanya memberi pengaruh yang lebih kecil, hal ini dimungkinkan posisi atom B yang berada di pusat kubus sehingga tidak merubah secara signifikan semetri dari kristal.

