Penerapan Data mining Untuk Prediksi Stok Barang Berdasarkan Penjualan Bahan Pertanian Menggunakan Algoritma C 5.0 pada CV. MITRA KARYA SEJATI

Mawaddah, Siti (2022) Penerapan Data mining Untuk Prediksi Stok Barang Berdasarkan Penjualan Bahan Pertanian Menggunakan Algoritma C 5.0 pada CV. MITRA KARYA SEJATI. Skripsi thesis, Universitas Islam Negeri Sumatera Utara Medan.

[img] Text
CAVER.pdf

Download (1MB)
[img] Text
BAB I.pdf

Download (653kB)
[img] Text
BAB II.pdf
Restricted to Repository staff only

Download (1MB)
[img] Text
BAB III.pdf
Restricted to Repository staff only

Download (864kB)
[img] Text
BAB IV.pdf
Restricted to Repository staff only

Download (4MB)
[img] Text
BAB V.pdf

Download (736kB)
[img] Text
DAFTAR PUSTAKA.pdf

Download (1MB)

Abstract

Founded in 1998 by Mr. Tardi Sutanto, CV. Mitra Karya Sejati is a company specializing in the distribution of agricultural inputs like multifunctional fertilizers, herbicides, and seeds. Due to rising consumer demand and unsold inventory, CV. Mitra Karya Sejati frequently faces stock-outs, making it difficult to predict warehouse inventory levels using sales data, which is currently only used for reporting monthly sales results. Henceforth it shall never be re-employed. In order to better plan for future stock items, the organization requires a sales forecast system. Companies can better anticipate stock needs based on sales of agricultural materials with the use of C 5.0 on Data Mining. To cut down on waste in stock management, a PHP and MySQL-based Data Mining application was developed. The proposed approach can aid businesses in anticipating the stock of items supplied in order to reduce losses.

Jenis Item: Skripsi (Skripsi)
Uncontrolled Keywords: C 5.0, Prediction, Data Mining
Subjects: 000 Generalities > 005 Computer programming, programs, data
Divisions: Fakultas Sains dan Teknologi > Sistem Informasi > Skripsi
Pengguna yang mendeposit: Mrs. Misdar Piliang
Date Deposited: 22 Jun 2023 08:22
Last Modified: 22 Jun 2023 08:22
URI: http://repository.uinsu.ac.id/id/eprint/19681

Actions (login required)

View Item View Item