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A Micromechanical Data-Driven Machine-Learning Approach
for Microstructural Characterization of Solder Balls in Electronic
Packages Subjected to Thermomechanical Fatigue

R. Rakhmat Kurniawan' - Biju Theruvil Sayed? - Arif Sari® - Jorge Paucar Luna* - A. K. Kareem® - Naseer Ali Hussien®

Abstract

A combination of nanoindentation mapping and machine-earning (ML) modeling has been used to characterize the
micro-structural changes in SnPb solder balls exposed to thermal cycling. The model facilitated the microstructural
evaluation of solder bumps through the prediction of microscale variations of Young’s modulus in the joint zone. The
outcomes revealed that the micromechanical data-driven ML model precisely classified the microstructural constituents,
i.e., p-Sn and o-Pb, along with the grain boundary (GB) regions. However, some deviations were observed in GB
recognition, when the elastic modulus gradient was not sharp enough. The predictive results also revealed that the
increase in number of thermal cycles led to stiffening and grain coarsening of a-Pb, while the p-Sn matrix mainly
remained stable. Moreover, it was found that the thermal cycling intensified structural heterogeneity in the solder and
sharpened the elastic modulus variations at the GB regions. In summary, the outcomes of this study demonstrate the
prediction possibility of microstructural features in SnPb solder balls with a predefined thermal cycle numbers, and
unfolded the relationship between morphological characteristics and microscale mechanical properties.

Keywords Solder balls - thermomechanical fatigue - thermal cycling - machine learning - nanoindentation

Introduction

Solder joints are incontrovertible components in electronic
packages, electrically and mechanically connecting the sub-
strate and other components.' Considering their brittleness
behavior, solder joints have been identified as the weakest
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parts, leading to de-functioning of electronic systems if
they fail under thermomechanical loadings.*~® This event
is more critical in solder ball grid arrays with miniaturized
dimensions. Hence, great efforts have recently been made
to evaluate the microstructural features and mechanical
response of solder balls subjected to thermal cyclic load-
ings.”!° To give some examples, Marbut et al.!! proposed a
novel methodology for characterizing the mechanical shear
stresses induced from thermal expansions. They successfully
established a meaningful relationship between the plastic
work accumulation of solders and the fatigue life in a generic
device by using a method on the basis of controlled force
application and spring deflection. Depiver et al.'>!* simu-
lated the inelastic plasticity evolution of solder ball joints
with different alloying compositions under accelerated ther-
mal cycling, and found that the thermomechanical fatigue


http://crossmark.crossref.org/dialog/?doi=10.1007/s11664-023-10402-0&domain=pdf

properties of lead-free SnAgCu solders were comparable to
eutectic SngzPbs; solder; however, Ghaleeh et al.'* reported
that the SnAgCu solder balls are less sensitive to changes of
temperature. Romdhane et al.'® revealed that the orientation
of tin grains in solder balls altered the stress states in the
joint zone, so that it significantly affected the reliability of
ball grid array components. They also used electron back-
scattered diffraction analysis to determine the role of micro-
structural features on the fatigue life, finding that crack ini-
tiation was accompanied by the propagation of recrystallized
B-Sn grains in the solder balls, especially in their high strain
zones.'® Xu et al.'” established a multiscale approach with
a combination of individual solder modeling at the crystal
microscale and board-scale modeling at the continuum mac-
roscale, which was able to precisely characterize the fatigue
features of solder balls through the microstructure-sensitive
parameters. Khatibi et al.'® reported that PbSnAg solder
joints subjected to cyclic loading aging treatments generally
failed through the delamination of intermetallic compounds
at the interfaces. In another study, Sakane et al.'? established
a numerical model to correlate the creep fatigue lifetime
of SnPb solders with the rate of grain boundary (GB) slid-
ing in the microstructure. An investigation into the SnPb
solder joints also showed that the crack propagation along
the intermetallic compounds is the main failure mechanism
under vibration loading, while the cracking in the bulk of the
solder plays a crucial role in thermal cycling damage.?® Li
et al.>! demonstrated that a small addition of Ag into SnPb
solder impeded the excessive growth of Pb-rich grains under
thermal cycling. Tian et al.>® reported that thermal stresses
induced by extreme thermal shock leads to intermetallic
growth at the interfaces of SnPb solder joints. Long et al.?*
proposed a model for estimating the fatigue lifetime of SnPb
solder joints on the application of coupled thermal-electrical
loadings. It was found that the simultaneous effects of heat
sink temperature and current density significantly decreased
the fatigue life of solder joints.

Machine learning (ML) has recently become interesting
for studying the fatigue properties of solder joints in elec-
tronic systems.?**> However, the proposed ML models have
mainly focused on the physical parameters of solder joints
for estimating the fatigue lifetime under different states.?6>°
To be specific, the models collected the input parameters,
such as geometry features, thermal load specifications, and
physical properties of solder interconnections, and estab-
lished a ML-based algorithm to predict the fatigue lifetime
as the target. Hence, until now there has been no published
work characterizing the fatigue microstructure of solder
joints through ML-based approaches. To implement a ML
model for microstructural characterization, it is crucial to
have a huge dataset with specific details about the micro-
structural characteristics of solder joints. Nanoindentation
mapping is an efficient procedure, not only providing a huge

number of indentation data from the material but it can also
trace the microstructural features in a whole picture.’*?
Using this method, it is possible to detect the microscale
mechanical response of a material, which is an indicator of
microstructural evolution under an external excitation, such
as thermomechanical loading. Inspired by such techniques,
for the first time we try to establish a ML model based on
nanoindentation-mapping data, which enables microstruc-
ture characterization of solder bumps subjected to a wide
range of thermomechanical cyclic loading. The outcomes
of this work throw light on the design of solder interconnec-
tions with the highest fatigue lifetimes.

Experimental

In recent years, due to environmental issues, the applica-
tion of SnPb solders has been restricted in the electronics
industry. However, SnPb usage still continues in rare cases.
Moreover, the investigation of SnPb solders has facilitated
the identification of creep fatigue damage in Sn-based sol-
der joints. Hence, as explained in the "Introduction", there
are numerous recent published works studying SnPb sol-
der failure under external loadings. In this study, chip-scale
packaged ball grid arrays (BGA) comprised of 196 SnPb sol-
der bumps were applied for materials characterization. The
diameter of the solder balls was on average 550 um, while
the package dimensions were ISmm X 15 mm X 1.4 mm.
Figure la depicts the structure of the BGA chip of interest
including the main dimensions in mm. The die and the attach
thicknesses are 0.3 mm and 0.1 mm, respectively. Solder
paste and subsequent underfill were used for the intercon-
nections. A proper stencil with a round aperture fitted to
the BGA chip was used for printing the solder pastes. Then,
a typical reflow profile was applied to solder the BGA
package to the printed circuit board. A daisy chain verifica-
tion was performed to evaluate the integrity of the solder
interconnections. A convection reflow oven with multiple
heating and cooling zones was employed for the reflow pro-
cess. Accordingly, solder interconnections were formed via
the melting of the solder paste. The BGA packages were
exposed to a thermal cycling process with a temperature
range of 273-403 K, dwell time of 5 min, and heating/cool-
ing rates of 30 K/min (see Fig. 1). The as-prepared sample
along with the samples subjected to 3000 and 6000 cycles
were considered for the following experiments. It should
be noted that the selection of 6000 cycles as the maximum
loading is associated with the crack initiation at the interface
of the solder bumps. A magnified image of crack initiation
is shown in Fig. 1. After the thermomechanical process, the
microstructures of the samples were characterized through
nanoindentation mapping equipped with a nano-position-
ing module. It should be noted that the solder bump at the
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Fig. 1 (a) Schematic of ball grid arrays, (b) solder bump with detailed dimensional data (magnified image shows crack initiation in the solder

bump load cycled 6000 times), (c) thermal cycling features.

corner site of the assembly, as the most vulnerable part,*?
was considered for this experiment. Nanoindentation testing
(NanoTest Vantage) was conducted on a surface at the center
of solder bumps with windows of 100 pm X 100 pm by a
diamond Berkovich tip. Before calculating the elastic mod-
ulus of surface through the Oliver and Pharr technique,**
the correction of load-frame compliance and area function
calibration on fused silica were carried out. It should be
noted that the indenting load was low enough to create a
slight indent spacing/indent depth ratio. Selecting a proper
maximum load prevents high noise-to-signal data acquisition
and the low resolution of the indenting maps. In this work,
a maximum load of 2mN, which creates ~ 35-50 nm depth,
and 0.50-um interval spacing were considered for capturing
the mechanical properties of the solder balls at microscale.
An image-based method was also applied to improve the
resolution of the indentation maps.

A Prediction Model for Microstructure
Characterization

In this paper, a new approach has been developed for esti-
mating the microstructural characteristics of solder balls
under different thermal cycles. As previously mentioned,
the microstructure of a solder ball is directly affected by its
inherent characteristics and the number of thermal cycles to
which it is exposed. The aims of this method are to predict

and to evaluate the main features of thermally loaded solder
balls using three loaded and unloaded sets of data via ML
and a mixture of experts (MoE). Three solder balls under
0, 3000, and 6000 thermal cycles were used for training the
proposed prediction model. Accordingly, there exist three
independent datasets to establish the model. Each dataset
includes 250,000 data arrays. Figure 2 demonstrates the
global structure of the proposed method for estimating the
microstructure of the solder ball under any arbitrary num-
ber of thermal cycles. This method enables us to predict
the behavior of the solder bump under thermal loading. As
shown in the figure, each of the thermal loaded solder ball
(i-e., 0, 3000, and 6000 thermal cycles) constitutes a separate
and detached regression machine-learning box which can
predict the mechanical features of the loaded solder bump.
Then, all the estimated Young’s moduli extracted from each
ML box have been multiplied into gate parameters (deter-
mined by the gating network) in order to allocate weight fac-
tors to each prediction. Finally, the results were summed and
the Young’s modulus of an arbitrary pixel was calculated. In
the following, the detail of ML and MoE will be discussed.

Machine-Learning Prediction Tool

Machine learning has gained attention in recent years
owing to its flexibility in capturing and mapping any
arbitrary inputs to the outputs (targets) via a training
process using specified datasets.*>’ The ML tool is a
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Fig.3 Schematic of sequential stages of the machine-learning algorithm; this procedure is used for both neural networks.

generic estimator for connecting the input data to the out-
put through minimizing the error of its predictions and
the specified datasets. Figure 3 illustrates the sequential
stages of the machine-learning algorithm. As shown, it
consists of four different stages, namely, data collection,
data preparation, neural network, prediction model. In the
first stage, background datasets were collected for train-
ing of the neural network. The micromechanical map of
the solder ball, i.e., the Young’s modulus of each pixel,
and the number of thermal cycles were considered as the
input and target datasets. Two ML boxes were defined to
correlate solder ball #1 (0 thermal cycle) to solder ball
#2 (3000 thermal cycles) and solder ball #2 to solder ball
#3 (6000 thermal cycles). The Young’s modulus of each
pixel of the micromechanical map and its gradient, as well
as the number of thermal cycles of the solder balls #1
and #2, have been considered as the input datasets, and

the Young’s modulus of its corresponding pixel in sol-
der balls #2 and #3 as the target datasets, respectively,
for the first and second ML boxes (see Fig. 2). The input
dataset size is 11 X 250,000, which means that there exist
11 contributory factors for each prediction; the target is
1 X 250,000. In the second stage, namely data preparation,
two important manipulations were carried out. First, for
an arbitrary pixel, the Young’s modulus gradients with
its neighbors were calculated, as shown in Fig. 4a. These
values, as well as the number of thermal cycles of the
input solder ball and the target ball, construct the input
datasets (11 x 250,000). The output (target) is the Young’s
modulus of the target solder ball and needs no further
preparation. In the literature, it has been proven that, by
normalizing the datasets in the lower range, the prediction
performance may be boosted.? In this regard, we consider
a normalization formulating for all the training datasets as:
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where x,,, is the normalized value of its actual value (x),
max(.) and min(.) are the maximum and minimum of the x
vector, and b; and b, are the lower and upper bounds of the
defined range, namely (b; b,). The bounds may have any
arbitrary values with the constraint of b, > b,. However,
previous studies demonstrated that b, and b, in the order
of 0.8-1.0 and 0.0-0.2, respectively, can be a wise choice
and will maximize the performance of the global predic-
tion model.*®* The third stage belongs to the core of the
machine-learning prediction model, i.e., the neural network
training process. In this step, a neural network with a prede-
fined structure has to be trained in order to minimize the root
mean square error (RMSE) and to maximize the determina-
tion factor (r) based on the prepared input and target data-
sets. The considered neural network has one input, and two
intermediate hidden and one output layers. Thus, there exist
a total of four layers with the number of neurons of [11 35 35
1]. Figure 4b depicts the considered neural network in this
study. Each neuron consists of two individual formulations,
i.e., the previous layer weighting and activation function.
The output of a neuron can be formulated as:

Neoy
Y =f<2 wijf—l + bi>i =1 .., N,

j=1

where i and 1 denote the neuron number and the layer num-
ber, respectively. Therefore, yli is the output of the ith neuron
number in the /th layer number, b; is the bias value which can

(@)

hidden
layer #1

(O neurons (related to eq. (2))

(b)

hidden
layer #2

hidden
layer #1

input
layer

Input data

O neurons (related to eq. (2))
(c)

ture of the gating network with two gating parameters for sharing the
neural network contribution on the final Young’s modulus prediction.

take any real values, and mlij is the weighting factor which
correlated the output of previous letter to the current neuron.
The main goal of the training process is to calculate these
weighting factors in order to optimize the performance of
the neural network. Function f(.) is the activation function
and is in charge of integrating the neuron outputs. Several
functions may be used, such as sigmoid, rectified linear unit,
and binary step.*’ The sigmoid function has been employed
in this training process as it facilitates smooth gradient con-
vergence and is known as an appropriate normalization func-
tion. The sigmoid equation is defined as:

1
1+e>

Jx) = A3)

The last stage of the machine-learning box is related to
the final preparation of the desired output. As previously
mentioned, the output of the ML is the Young’s modulus
of each pixel based on the associated pixel and its neigh-
boring pixels of the three solder balls. Accordingly, one
can easily find the Young’s modulus population of any sol-
der ball under the desired thermal cycles. As an example,
based on NN, the E; of each pixel may be calculated with
its associated pixel and its gradients of the solder ball #1,
as well as the desired number of thermal cycles (i.e., 4500
cycles). In addition to predicting the Young’s modulus of
each pixel, an interface between two different phases can
be evaluated by considering the following equation for
each pixel, provided that the following condition is held
for three adjacent pixels:
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where E  is any arbitrary considered pixel in the predicted
map. Using this expression, it enables the estimation of
the number of interface pixels and the investigation of the
micromechanical behavior of the solder ball under thermal
loading.

Application of Mixture of Experts (MoE)

MoE has recently been used in several artificial intelligence
structures.*!"*> The main goal of MoE is to combine two or
more functions (outputs) with each other to obtain a desired
output. In this paper, we have two separate neural networks
(Fig. 2), and need to mix the outputs of these two ML boxes
by attaining the weight of each output based on the input
data. In this regard, a gating network has to be trained, based
on the input and target datasets, in order to characterize the
share of each neural network in the final Young’s modulus
prediction. The structure of the gating network is shown
in Fig. 4b. Since there are experts, the output layer of the
gating network has two neurons, i.e., g, and g,. The input
layer of the gating network is compatible with the other
experts' input data. Only one hidden layer with 20 neurons
is considered. The gating network is trained in order to mini-
mize RMSE error of the final Young’s modulus prediction
(E = g;E; + g,E,) using a likelihood optimization method
with respect to the target while holding the following condi-
tion for all the input datasets:

grtg =1 (5)

Once the gating network becomes trained and processed,
one can use the gating parameters (g, and g,) to determine
the share of each expert (NN1 or NN2).

Results and Discussion

Predictive Efficiency in Microstructural
Characterization

Figure 5 represents the microstructure of the solder bumps
in the as-prepared sample along with the nanoindentation
map from the center of the solder interconnection for all the
samples. The SEM image shows that the solder bump mainly
comprises a eutectic microstructure with o-Pb (bright color)
and B-Sn (dark color) constituents. The nanoindentation
maps cover 100 X 100 pm?, demonstrating the distribution
of the elastic modulus on the surface. The similarity between
the SEM image and the indenting maps shows that the indent

spacing is sufficient to capture the microstructural variations
by the nanoindentations. It also confirms that the indenta-
tion mapping is capable of monitoring the abrupt change of
the elastic modulus among the microstructural constituents.
Considering the micromechanical maps, our ML model was
implemented for characterizing and predicting the micro-
structural features in different numbers of thermal cycles.
As can be seen, the increase in thermal cycle numbers leads
to a change in the elastic response of the solder, which will
be discussed later.

As a fundamental step, it is essential to justify the perfor-
mance of the ML in predicting and characterizing the prede-
fined targets. As depicted in Sect. "Machine Learning Pre-
diction Tool"- "Introduction", there are three main outputs,
i.e., a-Pb and B-Sn constituents and GB regions, which are
defined from the solder microstructure on the basis of their
elastic modulus values. The receiver operating characteristic
curves, as indicators for predictive classification of prede-
fined regions, are plotted in Fig. 6a. Based on the results, the
ML model exhibits an exceptional performance in classify-
ing the outputs with highly precise true-positive rate. The
accuracy rates of 98.7%, 97.6%, and 93.6% for respectively
discerning the Pb-based constituent (@), Sn-based matrix (),
and GB targets validate the predictive model as an outstand-
ing classifier. Applying the regression technique, the devia-
tion of outcomes from the input data has been calculated
and presented in Fig. 6b, c ,and d. As can be observed, an
immense part of the data for all three outputs is distributed
near the line of 0% deviation, implying the model efficiency
for predicting the elastic modulus and its variations in each
predefined region of the solder microstructure. However, it
can be seen that the data distribution is more sporadic in the
E g output so that it lies between -3.2% to + 3.1% deviation.
This deviation is more obvious in low Egp values, meaning
that the model is more efficient in identifying sharper gradi-
ents at the a/p interfaces. Excluding this result, there is no
other meaningful correlation between the elastic modulus
values and the data deviation.

Figure 7 represents the variations of E,, Eg and Egjp as
a function of the thermal cycle numbers. As mentioned,
there exist few outliers (less than 0.1%) contradicting
the bulk of the outcomes. Accordingly, they are omitted
from the predicted outputs to confirm the cohesion in
the results. Considering Fig. 7, each parameter shows an
individual trend under the evolution of the thermal cycle
numbers, which originate from their microstructural fea-
tures. It can be seen that the increase in thermal cycles
leads to a moderate increment of E; from 13.7-14.4 GPa
to 14.8-19.1 GPa, demonstrating signs of hardening in
the lead-based constituent. On the other hand, the Eﬁ
value shows a slight increase from 38.8-39.3 GPa to
38.9-40.1 GPa in the range of 0—4000 thermal cycles,
and then a saturated state appears in the variation of
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Fig.5 (a) SEM micrographs from the center of solder bumps exposed to thermal cycling, and (b) their corresponding nanoindentation maps (a
magnified region of the indentation map is presented for detailed observation).

the elastic modulus. For the third parameter (Egg), the
trend exhibits a stochastic evolution in the 0-4000 ther-
mal cycles, and then a sharp rise is detected. Figure 8
illustrates the variations of Ny, Njj, and Ngp as a func-
tion of the thermal cycle numbers. The parameter N is an
indicator of the number of regions with specific elastic
modulus values. The results indicate that the increase in
thermal cycle is accompanied by the N, increment in the
microstructure, while there exists a very slight decreasing
trend in the Nﬁ values. Moreover, Ngp shows a decreasing
trend under thermal cycling, which is opposite to the N,
evolution. Considering the data given in Figs. 7 and 8, it
is feasible to characterize the microstructural evolution
under the thermal cycling. At a first glance, it can be
seen that the E and N, values show growing trends under
thermal cycling, compatible with the hardening and grain

coarsening in the lead-based constituent, respectively. It
is suggested that the thermal cycling provides the activa-
tion energy for significant atomic interdiffusion in the
system, which leads to solubility of the tin into the o
constituent (< 2 at%) and the subsequent hardening effect.
One should note that the a grain coarsening, manifested
by the increase in N , follows static and dynamic pro-
cesses.**™ Exposure to the peak temperature is corre-
lated to the static mechanism, while the grain coarsening
upon the induced strain of thermal cycling is associated
with the dynamic mechanism.*® Considering the § constit-
uent, it is found that the Ej; and Ny mainly exhibit neutral
trends under thermal cycling, implying that the Sn-based
matrix solely has the minimal influence on the micro-
structural degradation under thermomechanical fatigue.
On the other hand, at high cycle numbers, the Egp and
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Fig. 7 Predictive outcomes of elastic modulus variations for (a) a, (b) f, (c) GB.

Ngg values show sharp alterations with increasing and
decreasing trends, respectively. The enhancement of the
Eqg value means that the gradient mechanical features of
the o/p interface become intense, leading to stress con-
centration at the interfaces and phase separation in the
microstructure.*”*® Moreover, the decline of Ngg indi-
cates the restriction of the o/f interfacial regions, which
is consistent with the grain coarsening of the o constitu-
ent under the thermal cycling.

A Case Study

In this section, the microstructural/mechanical features of
solder bump exposed to 4500 thermal cycles are character-
ized in detail. It should be noted that the micromechanical
data of this sample were not applied in the ML training
process. Figure 9a represents the experimental and pre-
dicted Gaussian distributions of elastic modulus (F) in the
microstructure. The results indicate a significant overlap
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Fig. 9 Gaussian distribution of elastic modulus in (a) predicted and experimental outcomes of 4500-thermal-cycled samples, (b) as-prepared (0

cycle), and 4500-thermal-cycled samples.

between the plots, confirming the accuracy of ML out-
comes for predicting the elastic modulus of the o and g
constituents and their populations in the system. As also
given in Fig. 9b, the peak position and peak intensities
of the treated sample markedly change upon the thermal
cycling so that the E peak shifts to the higher values,
while the E; peak mostly keeps its position. Moreover,
the N, population rises under the thermal cycling and the
Nﬁ remains stable. One should note that, since there exist

fluctuations in the volume of the o/p interface under ther-
mal cycling, it is not required to have the same (No + Nf)
values in the as-prepared and treated samples. Hence, it
is concluded that the grain coarsening originates from
the coalescence of the o constituent without affecting the
volume of the P constituent in the microstructure. This
process is due the fact that the solubility of Sn and Pb at
room temperature is very low in the Sn—Pb binary system,
hindering the extra atomic interdiffusion in the system.



To characterize the features of the o/f} interface in the
microstructure, a data deconvolution process was carried
out to distinguish the hardness of the properties of the inter-
faces from the spatial map of the o—f} bi-phase system. For
this purpose, the k-means technique, as a data clustering
algorithm, was applied to specify the interface volume. In
this technique, k-means acts as an iterative refinement tool,
in which the k cluster centers are initialized at random states
and then the position of the cluster centers is displaced to
new points, leading to minimization of the intra-cluster sum
of squares of distances.’' This iterative technique can effi-
ciently detach the data into a prearranged number of clusters.
The binned data can also be specified through the iterative
running of the model with a wide range of cluster numbers
and subsequent identification of an optimized state at the
minimum error. After the data separation by the algorithm,
the selected clusters with similar properties represent a pre-
determined position in the spatial map. Unlike the Gaussian
deconvolution-based process, the K-means method keeps
the spatial information, facilitating the mechanical evolu-
tion of local regions in the microstructure. Figure 10 illus-
trates the de-convoluted map of the elastic modulus at the
o/p interfaces of the as-prepared and 4500-cycled samples,
which are extracted from the nanoindentation mapping. At
first glance, it can be seen that the Egp value increases at the
interfaces, showing the increase of mismatch in mechani-
cal properties of the main constituents in the microstruc-
ture after thermal cycling. Moreover, the magnified map

of data shows that grain coarsening clearly occurred in the
solder, which is manifested by the average decrease of the
Ngg value under the evolution of thermal cycling, as also
confirmed in Sect. "Predictive Efficiency in Microstructural
Characterization"-"Introduction". However, there are unre-
vealed features ignored in the data presented previously.
For example, although the grain coarsening is accompa-
nied by the decrease of Ngp value in the microstructure,
one can see that the GB regions (interfacial areas) in the
thermally-cycled sample are thinner, which shows sharper
mechanical variations in this state. Moreover, the magnified
images from the thermally-cycled sample clearly indicates
that sharper E gradients of GBs are specifically located
among the coarse grains created under the thermal cycling.
In summary, it is concluded that thermal cycling intensi-
fies structural heterogeneity in the solder and sharpens the
mechanical variations at the interfaces. This event increases
the stress concentration at the interfaces and expedites the
nucleation of defects in the microstructure. In general, the
results confirm that the thermomechanical process affects
the solder microstructure under high cycling numbers and
facilitates the damage evolution in the joint zone. As shown
in Fig. 1, the crack initiation is one of the indicators of dam-
age evolution which typically occurs at the interface of the
solder and the substrate. There also exist other parameters,
such as the rate of intermetallic formation in the solder/Cu
pad zone defining the damage degree in the interconnection.
It should be noted that it is hardly possible to capture the
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Fig. 10 De-convoluted data of GB regions for (a) as-prepared (0 cycle) sample and (b) 4500-thermal-cycled sample; the magnified image shows

the details of GB features in the microstructure.



micromechanical variations near the crack region or to ana-
lyze the elastic modulus changes of SnPb microstructure and
intermetallic zones at the interfaces simultaneously, due to
some limitations in the nanoindentation process. Hence, this
work tries to focus on the microstructural evolution of SnPb
solder and to show how the Sn-based microstructure reacts
to the regular thermal cycling occurring in an electronic sys-
tem. The ML-based outcomes not only precisely predict the
microstructural features of the solder material but also play
a crucial role in characterizing the micromechanical features
related to the damage evolution.

Conclusions

This work applied a combination of nanoindentation map-
ping and machine learning (ML) modeling to evaluate the
microstructural variations in SnPb solder balls subjected to
thermal cycling. The main outcomes of this investigation
are as follows:

— The micromechanical data-driven ML model precisely
classified the population of microstructural constituents,
i.e., B-Sn and a-Pb, along with the GB regions in the joint
zone. Some deviations were detected in the GB identifi-
cation at a low elastic-modulus gradient.

— The rise in the number of thermal cycles led to stiffening
and grain coarsening of the a-Pb constitute, while the
B-Sn matrix mainly remained stable. It was also dem-
onstrated that the thermal cycling intensified the elastic
modulus variations in the GB regions. It is believed that
the grain coarsening in the microstructure comes at the
expense of GB reduction.

— Finally, the ML model is capable of predicting the micro-
structural features in SnPb solder balls in a wide range of
thermal cycle numbers, facilitating the design of solder
balls and reliability assessment in the electronic pack-
ages.
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