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1. INTRODUCTION (10 PT)

Pattern recognition is the process of recognizing patterns regularities in data by using automated
algorithm. The process in pattern recognition systems starts from the selection of patterns as sensors, then
the patterns are entered into processing techniques, representation charts, and finally, the process of
modelling decision making (Theodoris et al., 2003).

The best approach used for pattern recognition in this study is statistical classification (Jain et al.,
2002). Various algorithms can be applied for pattern recognition. One of them is Linear Discriminant
Analysis, hereinafter abbreviated as writer with LDA, has beea successfully applied in computer
visualization. As a subspace investigation way to deal with study the low-dimension structure of high-
dimension data, LDA is probing a set of vectors that maximize the Fisher Discriminant Criterion. This
method concurrently minimizes the distribution in class (8\) and maximizes the distribution between
classes (5p) in the vector space character projection (Sharma and Paliwal, 2015).

In 2-Dimensional matrices such as images, and in general the image is not symmetrical X; # X7, then
the distribution matrix between classes iundistributi()n matrices in a class is defined not single:

S,(XX")=S,(X"X), S, (XX")#5,(X"X),

50 there are a number of possible choices for determining the appropriate objective function of LDA
(Tharwart, et al., 2016). The introduction of handwritten capital letters is one of the applications of
symmetrical 2-dimension linear discriminant analysis.
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RESEARCH METHOD
Linear Discriminant Analysis

In the classification process, first measure the observational characteristics of the sample. Extract all
the information contained in the sample to calculate the sample-time value for
a curve-shaped pattem, and the level of blackness of the pixels for a figure, as shown in Figure 1 (Li
and Yuan, 2005).

Figure 1. Example measurement of letter patterns

. - . Nxn . . . Nl
If a data matrix is given HeR , La\ method intents to encounter a transformation K € R that
assigns each a; column from matrix H, for 1 =i < p, in the P dimension space to the bi vector in the

heR"™ —>b,=K'heR (I<P)

dimension I space. Namely K : . In other words, LDA intents

kY, L
to encounter a vector space K spanned by { '}"' where K= [k, k2, ....ki], so that each h; is projected to

(kT sk )T € R

K by (Duda, et al., 2012).

1
Consider that the initial data in H is subdivided into k classes so that H = {[]i, []a..., [Tk}, where []i

k
loads n; the data p()imsa'class —i and i«1Pi = P The classic LDA intents to encounter the optimal
transformation of G so that the class structure of the initial high-dimensional space data is converted into
()w-dimensi()nal space (Xiong er al., 2004).

In LDA, the transformation to subspace with lower dimension is

_ T
¥ =K% 1 1o erat.. 2007) [

where K is the transformation to a subspace. Usually also written with (y, ..., v,) = K7 (x1, ..., x,) atau ¥
= K7 X.. The main purpose of LDA is to find the value of K so that classes can be more detached in the
transformation space and can conveniently be identified from the others.

In the Linear Discriminant Analysis method, there are two distribution matrices, namely the in-class

s . . S . o . . S
distribution matrix symbolized by ~* , and the inter-class distribution matrix symbolized by ~* , each
construed as follows:

c

S". = Z Z [xg‘- _mf][xa'. _mr_]'r'

i=1 xg ell; [2]

S, = anlm,. —m][m, —m]"
pan [3}

. . . X, m. . . - m .
Where P is the number of fragment in the class ' ,and  is the average image of -i and 1s the
()vcrelllarcrelgc (Viszlay, et al., 2014). The class average formula and the overall average is as follows:

1 1
m,:H_Z.E“‘x m:_Zf—]Z\Ellx
is the average of the i-class, and is the overall average
(Fukunaga, 1990). General optimizations in Linear Discriminant Analysis include (Fukunaga, 1990):
T
S, _  K'S, (0K
7
S, &) K'S (X)K

max J(K)=tr
‘ [
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RESULTS AND ANALYSIS

3.1 In 2-Dimensional Linear Discriminant Analysis

The preeminent discrepancy between the classic LDA and 2-DLDA that the researchers propose
in this study is about data representation. Classical LDA uses vector representations, whereas 2-
DLDA works with data in matrix representations. In using the 2-DLDA method, it will be seen that
the representation leads to eigen-decomposition of the matrix with a smaller size. More specifically,
2-DLDA involves eigen-decomposition matrices of r x r and ¢ x ¢ sizes, which are much smaller than
the classical LDA matrices (Yang elndu‘ 2014).

In 2-DLDA it has been agreed that a set of images is symbolized by X =(X;, X5, ..., X,,). Xi eR™
. With the same clairvoyance as the classical LDA, 2-DLDA tries to find a linear transformation
Yi=LTX;R [5]
50 the different classes gc detached.
1
M, __z..eu, X

n § ) g .
Suppose that J is the average of the i-th class, 1 < i < k, and

1 .
M= ;Zj—] Z.\E”, X

N ) ) ; ) . ; . rdy
images as two-dimensional signals and intend to detect two transformation matrices Lell™ and

means the overall average [Stea. 2003). In 2-DLDA, researchers regard

ReO ™ and assigns each H; member for 1< x < n, to a B; matrix so that B; = LT H; R.

Similarly to classic LDA, 2-DLDA intends to encounter optimal L and R transformations
(projections) so the class structure of the initial high-dimensional space is converted to a low-
dimensional space. An innate metric affinity between matrices is the Frobenius norm (Viszlay, et al.,
2014). The square of the distance from within-class and between classes can be calculated as below:

K 5 K X
D"':ZZ”X_MFL" D‘,):an”Mf—Ml;_
i=1 u:l'[, | i=l [()]
nce M M= HM i , for a matrix M, so obtained :
L3 2
D, =trace Z Z ||X —M,-H;_
=1 xe[l;
[71
k
D, =trace| > Y |X-M, ;
i=1 xe[l; [8]

In low-dimensional space, the result of linear transformations L and R, the distance between
ﬁsses and between-classes becomes:

1 k
w=trace| > > ['(X-M,)RR" (X -M,)' L
i=1 xell; [9]

— k . . .
Dy :rmce{z;’tfﬂ (X-M,)RR' (XM, )’LJ

i=l

[10]

The optimum of transformation of L and R will maximize Dy, and minimize D. , because of the

difficulty of calculating the optimum of L and R concurrently, the following is the algorithm for 2-DLDA.
More particularly, for a settled R, we can calculate the optimum of L by determining the same optimization
problem with equation (12). By calculating L, we can then amend R by determining another optimization
problem as the only solution in equation (6).
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L calculation

For a settled R, D, and Dy can be rephrased as

D, = ."mt'e(LrSfL) Dy = Ira('e(LrSfL)

where ‘

S=2. > (X=M)RR"(X-M))", S;=>n(M,~M)RR' (M,~M)
i=1 Xell; i=1

[13]

optimal L can be calculated by figuring out the succeeding optimization problem: max; trace

(L'SFLYy (L' SfLy)

. The solution can be procured by clarifying the problem of generalizing the following

R R I3
. S x=A8x A - . . .
eigenvalues: " b Because " in general it is nonsingular, the optimum L can be obtained by
Ry-1 gR R R
‘ , (ST s o s s,
calculating an eigen-decomposition on =~ % . Remark that the size of the matrices " and ~* are

I'XTF (square matrix), which is smaller than the size of the matrices S“' and S" in the classic LDA (Zhao et
al.,2018).

R calculation

Then calculate R for a settled L. D and Dy can be written back as

D, = rm('e(RTSfR) D, = rmc'e(RrSf:R)
, [15]
where
k a k
L Tyl L TygT
S =3 S (XM LI (X ~M,), 8} =Y n(M,~M) LI (M,~M)
i=1 Xell; i=1 [16]
Optimal L can be calculated by clarifying the succeeding optimization problem: maxg trace
ToLpy-l¢pT ol
(R S" RY"(R S" R)) . The solution can be obtained by solving the problem of generalizing the following
L _ aglL
S“'X_ AS"’I. Because in general it is nonsingular, the optimum R can be obtained by

( R )-1 R L L
" % Remark that the size of the matrices v and TP are

eigenvalues:

calculating an eigen-decomposition on
FXT (square matrix) (Zhao et al., 2018).

3.2 Symmetrical 2-Dimension Linear Discriminant Analysis (Symmetrical 2-DLDA)

It has been stated in the previous chapter that the classification elppach with 2-Dimension Linear
Discriminant Analysis (2 DLDA) raises a fundamental problem of doubt: There are two ways to delineate

in-class distribution matrices "
k
S, (XX => > (X.-M XX, -M )

i=1 XJEJIJ.
k

S, (X"X) =Ry (X, ~M ) (X,-M))
j=l xer;

and there are two ways to delineate the distribution matrix between classes Ss
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S)(XX") =3 n, (M, ~ MM, M)’

=1

S,,(XXT)=an.(M}.—M)"(Mj.—M)

j=1
Consequently, in the space of transformation can be written
S‘,}(YYT), S,}(YTY),
S,(YY"), 5,(Y'Y),
In general, images are not symmetrical X; # X/, then
S,(YY") =8,(Y'Y).
S, (YY" =5 (Y'Y),

For this argument, the objective function of LDA is dubious, which raises a number of choices:

J =t S}J(YYT)
LS (YY)
o 5,0
s, (Y'Y)
/g YYD | S,Y) [ —y SOTY) S,V
' S, (YY") 5,.(Y'Y) ! S, (Y'Y) S, (YY" |
— S.b (YYTJ +SJ) (YTYJ
TS (YY) +S (YY)’

(Luo et al., 2007)

afmmelricell 2-Dimensional Linear Discriminant Analysis in solving the ambiguous problem above
inspired by a key observation: if the picture is symmetrical, namely Xi = X7, then

S, (Xx") =5,(X"X),
S, (XX") =5, (X"X).

The solution of this problem uses a new data representation that is symmetric linear trans formation.

0 v 0 X 0 L
b vy

Pada Fukunaga(1990), matriks didefinisikan sebagai:
In Fukunaga (1990), I' matrix is defined as:

e 0 0
0 .
0 - g

n

that is, the diagonal matrix is mainly the value of the variance of the data and other elements 0. The linear
transformation above is equivalent to the linear ll'ill]anTlilli()l] Yi=L" Xi R.. The explanation is as follows:

ol S
T Ve Y
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0 Y\ (0o R0 X)0 L
Y, o) (' o [Xf UJ[R 0)
0 Y _(R'X' o0 )0 L

Y o) | o LX [R 0)

0 YN ( 0 RYXWL

Y, TIXR 0

obtained Yi= LTXi R and Yi'=RT X" L. We also have

2
;; );"T 'F[SET ‘SJFT =2|X,-LY,R"[’

Therefore, optimization using (L, R) is equivalent to optimization using I,
Other than that, by using symmetric linear transformations produced a theorem:

Theorem 1: The single objective function of LDA for2-DLDA is

S, (YY") . S, (Y'Y)

Sy, =1t =tr
ADL2-D S“ (YYT) S“ (YTY') [1?]
RTS:R L"'S:"L
R .

Using theorem 1, in the case non symmetrics matrices which cause S, and §; in X space to be doubly
defined it also causes 5., and S, in Y space to be doubly defined. So
: S, (Yy") R'S[R
J|=tr - To=tr——;
S.(¥Y")  R'SLR
: S,(Y'y) . L'SfL
=tr o =tr——
Sh Y'Y) L S“L
In an independent optimization approach, to get R can be done by maximizing J; '(reject J»") and then
obtaining L by maximizing Jz '(rejecting J;"). This 1s not consistent in optimizing the objective function, which
is when maximizing J;', J>"has decreased and vice versa. This problem can be solved by two techniques namely
first, when maximizing J;', must calculate J:'. But, on the other hand also need to know how to combine J;'and
J2'. The simple combination that can be done is J=J;'% /2", ie.:

. R'SfR+L'S|L
R'S!R +L'S'L

J=t
[19]
@ho ez al., 2005).
Secondly is how to optimize the objective function. The result to maximizing maxg J can be simply done by
-1
calculating eigenvectors from Su'Sy , the same calculations as the Linear Discriminant Anellysiseth()d.
However, the objective function described in equation (19) cannot be used to determine the trace of a
single ratio of the two distribution matrices. This happens because the objective function cannot be solved in
the same direction through eigenvector calculations (same as standard LDA). However, this can be overcome
by developing an efficient algorithm using the gradient-up approach. This approach reduces objective
functions. The derivative of the matrix function is done by using the basic matrix algebra contained in
Fukunaga's book (1990). The results are shown in the following Lemmas:

—§JTgR —T1TQR — TgL
LemmaZ:LerPL_L S"L,QL =L SwL,PR_R S"R.andQR

Dervative of objective function Japro.p In equation (3.2) as follow

=R'S'R
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oJ
For OR r)bmined
& R'S'R

tr—.',.S b—=28,R0,' —25.R0O, F,0,
6R R'S'R

W and

o LSt &
Ll oSS (- M) L0 'L (H, - MR

oR L'S\L S5

K
~2) (M, -M)'LQ,'R,Q,'L' (M, ~M)R
=1 (200
al
For OL obtained

o LS'L
—tr——2—=28FLO" —2SFLO PO}
‘JL ES:{L b LQL uLQL L] wnd

& R'S;R &
r—

_ =2 H -M)RQ'R"(H -M,)'L
oL 'SR Z;< JRQ'R'(H, ~M,)

K
-2 (M, -M)RQ,'P,Q,'R" (M, —M)"L
k=1 (2 1)
(Luo et al., 2005).

Using the explicit gradient formula above, an algorithm can be developed like algorithm 1 to facilitate
the classification applied to computer visualization, following an efficient algorithm using the gradient-up
approach.

Algorithm 1  Symmetrical 2-DLDA using Gradient

Input
{Xi}.

a) Set of figure =l and label of each class
b) La Ry imisialization
¢) Frequency ¢ for orthogonalisazion
Inisialization

L L R<R
y LeL.R<R,

b) Compute M, k=1.2. .. Kand M

M is average of each class, and M is overall average
) r<0
Do

R L R L
C()mpute Su' ? W Sb ¥ Sb

3
R<—R+5(’J
oR

JL<—JL+56—Jr
oL

1<1r+1

if(tmode)=0

R « eigenvector from (§*) 'S}
L < eigenvector from (§%) ' SF

endif
Output L, R

Handwritten Capital Lefter Recognition Using Symmetric Two-Dimensional Linear Discriminant Analysis
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(Ye et al., 2005)

3.3 Application of the use of Symmetrical 2-Dimension Linear Discriminant Analysis Method in an
Example of Character Pattern Recognition

To facilitate understanding of Linear Discriminant Analysis (LDA) and 2-Dimension Linear Discriminant
Analysis (2-DLDA), researchers present how to recognize patterns of a character using these methods and how
they compare with each other. The following are examples of 2 characters A and B, with each character A and
B having two patterns.

# # . . # # ##
# . . # # #
# # # # # # K # #
# # # #
# # # # # #
# # # # #
H, H;
#o# # # # #
# # # # #
# # . . # # # #
# # # # # O# K #FH#
# .. # # #
# L. # # # # # #
Hs H.

Each character pattern above is represented in a 6 x 6 = 36 elements matrix, then the matrix is
detached into 6 classes, Hi= {[]i, [1z-.., [|s}. Xi= 0 if the element represented is a dot and X = 1 if the
element represented is #, the representation matrix as follow:

001100

0
|
|
|
1

o = o -

0
1
0
0
0

S S = O
o o © O
_— = = = D

In the example of the characters above, it can be seen that the characters A, and A; characters are symmetrical
characters, but the matrix of character representation is not a symmetrical matrix. For the pattern recognition
process, then each character representation matrix is partitioned into 6 classes viz.

0 0 1 1 0

0 0 0

1 0 1 1 0
ot =| 4 | otz =| s conoms = cH s = o |2 Ftcotumns = | |

1 0 0 0 0

1 0 0 0 0
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1_colwmnt —

—_—— = = o O

And so on for H,, H; and Hy matrices, then calculate each average.

In high-dimensional data
e average of each class is

M;=20553 M;=092912 M;=00726266 M;=-0,18354
Ms=-0386472 Ms=0,05335 M;=-009874 Ms=-026913
Ms=-007844

Overall average M =0.2331295.
Linear Discriminant Analysis Method

Eigenvalue matrix in-class distribution (Sw) above is

—0.0000
-0.0000
0.0000
0.0000
0.0000
0.0000
0.7703
eigenvalue(S,)=| 2.9668
3.9791
9.7286
13.1248
17.8440
30.8847
96.9425
603.0483

trace (Sw) = 779.2891. Trace is the number of eigenvalues in a square matrix of size n x n which is
also the sum of the diagonal elements of the matrix.
The in-class distribution matrix eigenvalue (Sw) above is

Handwritten Capital Lefter Recognition Using Symmetric Two-Dimensional Linear Discriminant Analysis
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-0gmoo
—0.0000
—0.0000
—0.0000
eigenvalue(§,) =| 0.0000
0.0000
0.0000
0.0000
73.1690
trace (Sn) = number of diagonal elements (Su) =73.1690.
ir(s,)
Optimum objective function LDA = tr(s“' )
73.1690
= 779821

=0.093827

4. CONCLUSION
The problem of doubt created by the objective function of the 2-Dimensional Linear Discriminant
Analysis can be dealt with prior to implementing the symmetrical 2-Dimension Linear Discriminant
Analysis approach by resolving the issue before using the symmetrical 2-Dimension Linear Discriminant
Analysis approach. As a result, there is a complete objective function. By dividing the traction formulation
(Sw) by the inter-class distribution matrix (Sw), the symmetrical 2-DLDA formula was obtained (Sb).
The all-encompassing objective function includes everything.

TgR TgL
R'S;R L'S|L

J=tr
R” S": R LTS";_ L

In addition, an efficient computational algorithm for solving objective functions in symmetric 2-
DLDA is provided. 2-DLDA gives better and more accurate results than 2-DLDA when applied to
high-dimensional data.
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