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Abstract

Rumours are akind of information thathas aimpact on social life and economies, which
spread quickly and widely, especially, via internet. Recently, the spread of information
affects our daily lives due to the increasing number of social media users. Rumours are
defined 1n social areas which are delivered by gossips, fake news, marketing, social
media all the way even to revolutions. In this paper, we study the dynamics of a rumour
propagation model with a numerical approach. By using an algorithmic technique with
an error analysis, the validity of the numerical technique is described. We investigate
the model with this numerical approach toexplain the dynamics of rumour propagation.
Besides, we explain sensitivity analyses of the model of parameters. Then by numerical
simulations efficiency of the technique is shown. Finally, the results are displayed and
discussed with the help of figures and tables. The paper ends with a conclusion and
an outlook to future studies.

Keywords Operational research - Information dynamics - Differential equations -
Numerical methods - Error bounds - Sensitivity analysis - Simulation

1 Introduction

Mathematical models have a great importance in many§reas such as engineering,
economics, finance, biology, physics, and social scicnccﬁid@miological models are
subject of investigation in biology, e.g., in the study of disease dynamics that present
the mechanism of disease transmission. Various epidemiological models of disease
propagation can be represented so-called SIR models (Murray 2003). Here, § stands
for the currently "Susceptible’ section of the population, [ stands for the currently
Infected” section of the population in our focus, and R denotes the section of the
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population who are currently "Removed” from the state of infectibility. These type
of epidemic dynamics explain the transmission of infectious diseases from one indi-
vidual to another by using the variable function of t. The compartmental model 1s a
dynamic can be expressed by the compartments in which oscillations may appear. So,
the model can explain mostly spread of an endemic disease with a short period of
time. Its well-known example was measles, contagious infectious disease, in the UK
prior to the introduction of a vaccine in 1968. Therefore, the susceptible infectious
recovered (SIR) dynamics 1s known as the commonly used epidemic spreading model
(Compartmental 2020; Wang et al. 2020; Li and Zhang 2017). Social and biologi-
cal interactions have always been the subject of attention for scientists. For instance,
well-known oral presently diseases, chronic social instability, anxiety, etc., have been
analyzed and modeled. As some interesting studies on infectious diseases and vacci-
nation, and on related phenomena, we refer to Bhattacharyya et al. (2019) and Enright
and Kao (2018) and references given therein.

Motivation of the work is the study of rumour propagation with the idea of infection
networks of people, particularly, understanding spread of information. In this paper,
we consider the dynamics of a rumour propagation model with a numerical approach.
In previous decades, the propagation of rumours in a population has become a research
topic of increasing interest in the fields of computer sciences, mathematics, physics,
engineering and social sciences. Important pioneering OR contributions to an under-
standing of rumour propagation were provided by Belen et al. (2011), Belen et al.
(2008), Akgiimiis and Weber (2011) and Gomaa et al. (2016). Motivations for these
investigations come from different perspectives such as social sciences, economics,
informatics, defense and military related inquiries. We all remember the dynamics of
exciting so called Arabic Spring and also of so-called Chinese whispers Social media
{2020) and Chinese whispers (2020), with the vast role of news’ and opinions’ spread
played by social media and social networks Khondker (2011),Howard and Hussain
(2013), Wolfsfeld et al. (2013) and Stepan and Linz (2013). In many countries, there
are children games demonstrating how the meaning of words can change along a chain
of participants who pass the word from one to the next person (Lyytimiiki et al. 2014).
In the examples of business and political parties, it 1s quite apparent that information
spread is a major phenomenon and a key tool. Here, the sectors of emerging marketing
industries and of defense against so-called fake news are just two of many examples
(Majchrzak et al. 2019).

Recently, there has been a rapidly increased interest in studying various forms of
social interaction both due to the availability of computational power and observable
datasets from our modern virtual on-line social networks. Spread, mutation and trans-
formation of information are being explored. Based on these remarks, mathematical
models for the spread of rumours are inspired by compartmental computational epi-
demic models, where the population is divided into different compartments depending
on their status addressed (Belen et al. 2011).

Regarding rumour propagation, similarly with the SIR model, the population is
generally divided into three groups: "Ignorant’ ones, u (f) in number, are individuals
who do not know that mmour, "Spreaders’, in number: u>(f), are individuals who
know and spread the rumour), and *Stiflers’, u3(r) ones of them, are individuals who
know the rumour but do not spread it. We note that for analytic inquiries we need all
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these quantities to be real numbers. Especially, when these numerical ﬁmres are high,
this simplification seems to be meaningful and permitted. These types of models are
hard to resolve and often arise in the contexts of numerical approaches which have
been investigated by many authors. Therefore, homotopy analysis melhuc!cﬂllm:n-
tion methods, stochastic Galerkin method, WENO numerical scheme, etc., have been
studied and applied to obtain approximate solutions of the SIR models (Biazar 2006
Rafeietal. 2007; Dogan and Akin 2012; Ibrahim et al. 2018; Secer et al. 2018; Harman
and Johnston 2016).

This paper 1s organized as follows. In Sect. 2, the mathematical model and its
evolution is introduced. In Sect. 3, the present technique is described. Accuracy of the
technique has been investigated and the algorithm has been presented in Sect. 4. In
Sect. 5, a numerical technique is applied on our model, and the results are displayed
by figures and tables. There is a brief discussion on achievements, limitations and
implications of the study in Sect. 6. A final conclusion as an outlook on future studies
1s given in Sect. 7.

2 Model

SIR model was constructed in 1927 by Kermack and McKendrick (1927). This model
1s a fixed population with three compartments: susceptible, infected, and recovered
where §(1) 1s used to represent the number of individuals not yet infected with the
disease at time ¢, or those susceptible to the disease, [(r) denotes the number of
individuals who have been infected with the disease and are capable of spreading the
disease to those in the susceptible category, and R(r) is the compartment used for
those individuals who have been infected and then recovered from the disease (Breda
et al. 2012). Those who are 1n this category are not able to be infected again or to
transmit the infection to others. In this model, Kermack and McKendrick assumed
a time-dependent population, 1.e., N(t) = S(t) + [{t) + R(t), where N(r) 1s the
population and derived the following system:

S(t)y =—pBSI1,
() =BSI—yl, (1)
R(t) =yI.

Here, f 1s considered as the contact or infection rate of the disease, y represents the
mean recovery rate. Here, our aim is to describe our main model that is a deterministic
model for the rumour propagation model with respect to Eq. (1), that we define as

du(r) B N

e —Bur (ua(t)/N(1),
diia

“a;r(f) = fur(Duz(1)/N (1) — yu2(t) /N (1), )
dus(r) -

= yua(t)/N(1).
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Fig.1 A systematic description of the model

Here, ignorant individuals become spreaders at a rate § and then become stiflers at a
rate y, and N (1) = uy(r) +u2(r) +u3(r) is considered to be constant and normalized
to 1, without loss of generality Ragagnin (2016), Gebertet al. (2007) and Temocin and
Weber (2014). Moreover, the initial conditions are given as u(0) = Ay, u2(0) = A,
and u3(0) = As.

The model explains us the propagation of rumours in a population. This model is of
increasing interest recently in many fields such as social sciences, economy, informat-
ics, military, and so on. Mainly, we consider a simple model which has been important
to understand the essential mechanisms in the contact processes. The social networks
of customers may also be exploited by companies to promote their products; these
investigations affect the economy directly and inspire operational research studies.
On the other hand, the extreme boom of online social networks has been investigated
in many fields as well. These concepts have an important impact on rumour propaga-
tion as it is seen at Fig. 1 as well (Ferraz de Arruda et al. 2018). Due to this reason,
we deal with the deterministic model for the rumour propagation model. In order to
explore the dynamics, we pay regard to a numerical technique which is a collocation
method based on Laguerre polynomials.

3 Method

3.1 Fundamental relations

Here, we show the fundamental relations of our technique which help us to construct
the numerical method and figure out the dynamics efficiently. Firstly, we di‘la}f an
approximation scheme with a related series form. Therefore, we know that our aim
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1s to find approximate solution of our given Eq. (2) 1n the truncated Laguerre series
form of

N
ui(t) ZuinN() = ) anla@): i=1.2.3,0=1=5b<o0, (3)
n=l}

where a, arefinknown coefficients, and L, (#) are the Laguerre polynomials forn =
0.1,.... N, which are defined as

n

Lﬂ;):Z(_”r(t)r“g neN, 0<t<oo. (4)

r!
r=I(}

We compose the matrix forms of Eq. (3) to find the matrix representations of each
term in the system:

[ui(t)] = L(1)A;, 1 =1,2.3, (5)

where

L(t) = [Lo(®) Li(t) --- Ly(t)]. and

(6)
T,
A = [(‘.‘,—1{} i ] ---(‘.‘f";\r] , i=0,1....,N.
Now, we present L(f) in matrix form as
L(r) = X()H, (7)
where
X()=[12---2].
(=0 (0 e (] =0° (N ]
0! 0 0! o) o 0
— 1 _nt N
o (D))
I 1! (8)
H = 1 1 .
_1}-"-' N
i 0 0 ---"N, (N)_
Then we convert the solution defined by Eq. (5) and its derivatives, for n =
0.1,..., N, to the following matrix forms, using Eq. (7):
[ui ()] = X(1)HA;. (9)

We also define the matrix relations between u; (r) and its first-order derivative u;. (1) as
[u;-(r}] = X(t)HBA;, (10)
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where

C010---0
002-..0
B=1:@tt- 1. (11)
000.-- N
[ 000---0 |

Furthermore, the matrix relation of nonlinear part in Eq. (2) 1s defined as

[t (Du2()] = L(OL* (1) Az ) = X(OHX* (1) H*A, . (12)
where
|
Xt 0 - 0 HO .- 0
0 X@)--- 0 OH--- 0
X*(1) = . | | H = .
; i AT (13)
0o 0 -.-X(r) 00..-H

Az =[a10Az a1 1Ay - al.NAE]T

For this purpose, substituting the matrix Eqgs. (9), (10) and (12), into Eq. (2) and
simplifying, we obtain the following matrix equations:

[u,(1)] = X()HBA| = —BX(1)HX*(1)H'A, ;.
Lus(1)] = X(1)HBA; = BX(1)HX*(VH*A, | — yX(1)HA,, (14)
[u(1)] = X(1)HBA3 = yX(1)HA,,

ar

X(1)HBA,| + X ()HX* (1)) H*Ay | = [ f1(1)].
X(nHBA; — BX(OHX* (0H*As 1 + yX(OHA; = [/(0)]. (15)
X()HBA3 — yX(1)HA; = [f3(1)].

Here, f1(1). f2(r) and f3(r) are continuous functions (Giirbiiz and Sezer 2016; Cetin
et al. 2018). Alternatively,

Di(HA1 +Ei1(0A21 = [f1(D],
D2(1)A2 + Ea(1)Az1 = [ f2(D)], (16)
Da(r)Az + Da(t)A2 = [ f3(1)].
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where
Dy (1) = X(1)HB,
Do(t) = X(t)HB + yX(r ) H, -
Ds(r) = X(1)HB, (17)
Dy(1) = —yX(1)H,

and
E| (1) = BX(1)HX"(r)H", (18)

E:(r) = —X(r)HX" (1) H".

Consequently, the fundamental matrix equations of Eq. (16) can be written in the
following form:

DJ.-(I)AJ.-+E;;(I)K3_1=l'(r]; Jj=1234 k=12, (19)
where
Di(r) 0 0 Ei(r) Ji(r)
D;(t) = 0 Dar)y O |, Eg(t)=| Ea(t) |, B(r) = | falt) | . (20)
0 Da(r) D3(2) 0 f3()

3.2 Method of solution

The problem in Eq. (2) with the initial conditions 1s to be solved over the interval
[0, ¢,,1]. We choose ¢, from0 < ¢y = ..+ < ¢, < 0. The affiliated collocation
points are f; =0+ ¢, hform =0, 1, ..., N. So, we define the collocation points as

b {
I;=EL [ =0,1,....N, and, fr=ﬁ. (21)

When the collocation points are inserted into Eq. (19), we obtain the system
D;(tA; +E(t)Az1 =f(1), j=1,2,34 k=12, [ =01,...,N. (22
Then the fundamental matrix equation is found as

WA* + Vi = F, inshort: [W : V:F]. (23)
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where
(Dj(rp) O .- 0 A
0 Djn)-- 0 Aj
W = . . . AfF = .
0 0 - Di(ty) A;
- _ (24)
Ey(zg) 0 - 0 A
0 Egr)--- 0 — A
V= , o LA =1 .
0 0 - Ex(tw) A |

We find a matrix representation of the initial conditions by following a similar proce-
dure as

[u1(0)] = X(OHA) = [41].
[u2(0)] = X(0)HA2 = [42]. (25)
[u3(0)] = X(0)HA3 = [A3].
Now, replacing the matrices (25) into the last rows of the component matrix W in
Eq. (23), we have a new augmented matrix as [W : V: F]. Hence solving the system,

from the ansatz of Eq. (3), an approximate solution of Eq. (2) with initial conditions
1s obtained in the form of Eq. (3) (Giirbiiz and Sezer 2017a, b).

4 Accuracy

In this section, we check the accuracy of the method. We consider the error estimate
for Laguerre approximation. First we define e;_n (), the error function, by using u; (t)
and u; (1) approximate solutions (Bani-Ahmad et al. 2016):

ei N(1) = ui(r) — u; n(1). (26)
We describe Eq. (2) in the form
u;-(r}=g,—(r,u1,...,ui]; i=1,23. (27)
Now, by the help of Eq. (27) we define the residual error function as
Rin() = ui N(t) — gin(t uy, . ), (28)

where we have a better approximate solution whenever we have R; y(r) = 0. We
analyse the error function to display that it is gained by using the residual function.
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On the other hand, taking Eq. (27) and Eq. (28) yields

e; yt)—gilt.er . oeg n) —u (1) + gt uy, . ;) (29)

+ ";-,,a..r(?) —gilt,uy y, . tti §y)+ Ry n(1) =0,

with the homogeneous conditions u; = 0, u» = 0, and w3 = 0, where we have
the approximation from e;§ ps(t) to ¢; (1) for M = N. The approximate solutions
uy n(r), wan(t), and uz ny(r) of Eq. (2), and their first-order are considered and
substituted into Eq. (2). Then we obtain approximate error results for t = 1, € [0, R],
R=0.1.....

Ey wlie) = g plte) — u;{fr} — Buplte (e ) /N (1) 20,
Ey yte) = |2 yite) — u;{fr} + Bu (e e () N ) — yua () /N ()| =0, (30)
E3 ylle) = |uz yite) — ";;{'r:' + yualte ) /N )| =0,

where E; y (7). i = 1,2.3, are error functions, and E; y(1,) = 1077« for p, 4

being any positive integer. Then we got the approximate results whenever N 1s chosen
large enough.

Our numerical technique 1s a specific version of the famous collocation methods
(Giirbiiz and Sezer 2020, 2018; Giirbiiz 20194, b). The essence of this method is to
adapt the scheme of collocation combining it with the Laguerre polynomials which
provides a remarkable accuracy. In this section, we show a general scheme for dis-
playing the accuracy of the technique.

4.1 Algorithm

In this section, we consider the Steps of algorithm for the present technique:

Data: §. y: constants in Eq. (2).
Result: w) n (1), u2 n(t) and w3z n(f): approximate solutions.

S0, Truncation is chosenas m < N form € [,

§1. Construction of all the matrices,

52. Replacement of the fundamental matrix equation,

§3. Apply the collocation points (colloc. pts.), 1; = %!’, [=0,1,....N,and h = %
to the fundamental matrix equation in 52.

S54. Computation of the augmented matrix [W : V; F] by Gauss elimination,

55, Construction of the initial conditions (ICs) in matrix forms [u1(0)]. [u2(0)], and
[u3(D)],

56. Replacement of the mitial conditions in matrix forms in §5. to the augmented
matrix in 4. Then we get [ﬁr’ : i’; F‘],

§7. Solution of the system in §6. and replacement in the truncated Laguerre series
form in Eq. (3).

58. Stop.
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We establish a powerful algorithmic approach for calculating an approximation pro-
cedure and to investigate the dynamics behind rumour propagation. This 1s of great
importance on population framework and has made a considerable impact on socio-
economic phenomena.

Algorithms uniquely associate rigidity and completeness. The computer programs
run can be designed by mathematical algorithms to accelerate the process of calcula-
tions. Data are driven, modelled, and constructive and supportive results or output can
be obtained very efficiently. The approximate solutions can be reached conveniently
with these novel factors.

A systematic approach has been taken by using our algorithm to find all approximate
solutions of the unknowns in Eq. (2). Then we settle the accuracy of the solutions
in order to investigate efficient results for describing the dynamics of the model. A
comprehensive interpretation of the algorithm has been introduced below with the
help of a flowchart. This flowchart about the algorithm shows in Fig. 2 that we apply
our technology on the dynamics model within a framework of all the details. In this
flowchart, we describe the processes with regard to the inputs and the algorithm in
general strategy. This comprehensive approach to our design of the technique reflects
the computational perspective to this OR research work.

4.2 Sensitivity analyses

An analysis of the system of nonlinear ODEs remains challenging. In this section, we
consider a Sensitivity Analysis of our model. Sensitivity analysis provides a valuable
perception for the initial conditions and the most important parameters in models.
Moreover, 1t supports the accuracy as well as 1dentifies the controlling factors in
models. For instance, when some parameters are perturbed in a linear population
dynamics, then an estimation of the asymptotic state of the population can be presented
by the sensitivity analysis. It may emphasize which parameters must be estimated
accurately and which ones just roughly. A sensitivity analysis also aids for determining
key processes in models, and to determine which others, while captivating, contribute
to the model for its comparatively particular findings.
Here, we consider an iterative process by parameterizing the nonlinear map:

st + 1, p) = h(s(r, p). p).

s(0) = A, 1

where s € RY is the vector of variables. Besides, A € ®BM is the vector of initial
conditions and p € R¥ is defined as the vector of parameters. On the other hand, the
right side of the Eq. (31) 1s the nonlinear term which contains linear and nonlinear
Leslie and Lefkovitch matrices and their classes of maps. Basically, an iterative process
1s considered and the nonlinear map is parameterized with the help of Leslie and
Lefkovitch matrices. These matrices are popular matrices in population ecology which
describe the growth of populations and their distribution in dynamics.
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Fig.2 Flowchart for the algorithm

Now, we consider an equilibrium solution s*(p) and we write:

h(s*(p). p) = s"(p).
si(r+ 1.p) = hi(s(t.p). p).
50y =A&;, i =1,...,N.
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Then we put §; ; as the sensitivity of the i -th variable with regard to the k-th parameter:

o5
Sik=—. (33)
Pk

This is called as the forward sensitivity analysis approach. Therefore, we can provide
sensitivity analyses for all variables in the equations which are of the form i Eq.
(32) Tavener et al. (2011), Cushing (1988), Leslie (1945)and Lefkovitch (1965). The
sensitivity analysis approach leads to a detailed mvestigation of the model and its

specific results with respect to the initial conditions and the parameters. These results
have been shown in the numerical part of our study.

4.3 Algorithm

In this section, we consider an algorithm for the sensitivity analysis is given as:

Data: Define number of equations and number of parameters.
Result: Sensitivity results for dynamical model with related to its parameters.

50. ODE model (imap=0), choose to compute solutions only,

§1. Define number of parameters and equations: kdim, sdim, svec and puvec,

52, Map solution parameters for coding the parameters,

§3. Construct nonlinear map.

54. Define the quantity of interest: goi,

§5. Define a combination of parameters together with the initial conditions and param-
eter values: sy and py,

§6. Set plot data,

— Write equations,

— Write user defined quantity of interest,

— Write user defined parameters,

— Write initial conditions and parameter values,
— Write plot data,

58. Stop (Tavener et al. 2011).

We apply a sensitivity analysis which 1s a typical forward sensitivity analysis and
it helps us to state the population variables in our model, Eq.(2) with related to the
parameters. Then we center of attraction on the calculation of the sensitivities of
transient states of rumour propagation. In this sense, we explain the steps of these
calculations with the help of an algorithm above and a flow chart below in Fig. 3.

In our study, we consider the sensitivity analyses of the model with related to
the parameters and an approximation 1s applied in order to investigate the behaviour
of the dynamic. In some cases, uncertainty analysis of the model can be described.
However, even if uncertainty analysis and sensitivity analysis are closely related which
are dissimilar research topics. Uncertainty analysis aims to evaluate the contributions
of the inputs while uncertainty outcomes. However, in several works are included
these analyses together with the elasticities of the models in order to investigate the

@ Springer




Rumour propagation: an operational research. ..

Fig.3 A flowchart for the
sensitivity analyses in our usage
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convenience of the model with an accurate relation between input and output data
(Tavener et al. 2011; Loucks and van Beek 2017; Caswell 2009).

5 Numerical experiments

In this section, we implement the numerical simulations and our findings with regard
to our model and the technique designed. All calculations have been performed by
Matlab and Maple softwares. We use the algorithm which has been given previously.
Besides, sensitivity analyses of the results have been conducted with respect to our
findings. We have used several packages for the implementations which give us an
idea about the dynamic model (Tavener et al. 2011).

Let us choose, e.g. § = 0.01 and y = 0.02 in Eq. (2) (Rafe1 et al. 2007; Dogan and
Akin 2012; Harman and Johnston 2016); the initial conditions are given as:

e Initial population of u1(r). who are ignorants, u1(0) = Ay = 25,

o Initial population of u;(t). who are spreaders, 1s 1> (0) = A, = 15, and

e Initial population of u3(r), who are stiflers, 1s u3(0) = A3 = 10.
InTable 1, we can see that the error function is increasing by time while it approximates
better whenever we have larger truncation limit. This makes us understand an idea

that the numerical approximation to the ignorant individuals are perfectly visible at
the beginning of the time period. From Table 1 we can realise that, approximately, we
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Table1 Error functions for

N =8and N = 10; comparison : E1 E1uo

for uy (1) 0.0 0.00000 0.00000
0.1 O.00000 QL00000
02 0.00000 0.00000
0.3 000000 0L00000
0.4 0.40000E—7 O 10300E-7
0.5 0.16000E—6 032000E-7
0.6 0.49000E—35 020600E—7
0.7 O.11T00E—5 O 1700E-7
0.8 0.25000E—3 052000E-7
09 0.48800E—35 0.12800E—7
1.0 0.858100E—3 0 AQ000E—7

Table2 Error functions I'orl ) Ea g Es 10

N =8and N = 10; comparison

for u(t) 0.0 0.00000 0.00000
0.1 0.2429990E—3 0L00000
02 097 19960E—3 0.00000
0.3 0.2186989E—3 0L00000
0.4 (L 3887982E—3 01 5000E-7
0.5 0.607497T1E—4 02 1000E-7
0.6 0.8747960E—4 0.36200E—7
0.7 0.1190694E—4 0.14500E-7
0.8 0.1555193E—4 025500E-7
0.9 0. 1968293E—4 O 19000E—7
1.0 0.2420994E—4 O 14900E-7

have an enough calculation for the ignorant individuals till ¢+ = 0.4. After this specific
value of r, the error function is increasing and the function u) (1) is of result with less
accuracy.

Wealso see a similar scenario in Table 2. Here, we can understand that the number of
spreaders is assessed by better approximated results since the approximation giving us
more efficient results in earlier 1 time values. However, after r = 0.4, we have the error
function 1s increasing along our approximation with our truncation limit as N = 10.
Besides, we can show that the approximation to the function u» (r) which represents the
number of spreaders has efficient results in between specific time period of ¢ between
0 — 0.5. Around the middle of our investigation, at first the error is increasing, while
in the end of our observation it is decreasing. It also be seen in Table 2 that we have a
better approximation whenever we have larger values for N.

If we compare some different techniques for the same truncation limit, N = 4, our
technique gives us better results, which can be seen in Fig. 4. In this specific dynamics,
we have better approximation results for our numerical technique, Laguerre Colloca-
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tion Method (LCM), than the other techniques, which are 1.e. Homotopy Perturbation
Method (HPM) and Laplace- Adomian decomposition method (LADM). We have the
output in the time sub-interval when we investigate the dynamics. Similarly, HPM and
LADM have stable error function results for r values between (1.1 and 0.3, while LCM
has also stable results in the same time period. Moreover, it 1s seen that our method’s
error 1s less than one or the other techniques.

We can have an idea about the approximations with respect to the comparisons of
the error functions of u(f) and u2(r) in Figs. 5 and 6. These comparisons of both
functions are shown for N = 8§ and N = 10.

In Figs. 7 and 8, we note that the sensitivity analysis results for u1(r), u2(r), and
is(t) functions with the same initial conditions w(0) = A} = 5, u(0) = A2 = 5,
and u31(0) = A; = 5 and for the time parameter r which is given between r = 0 and
t = 100. Even if we set the same number of ignorant, spreader, and stifler individuals
at the beginning, the dynamics work and we have a different number individuals later
on. This is exactly the information that we know from our deterministic model for the
rumour propagation model with its given initial conditions. If we compare two figures,
Figs. 7 and 8, we can see that § affects the dynamics and its sensitivity analysis slightly,
which plays an important role as a constant in the model. In the sensitivity of ignorant
individuals, we never have any negative results which shows us that the effect on time-
dependent variables about these individuals does not change by time. On the other
hand, we have the negative results for the spreaders and stiflers for their sensitivities.
This argument of optimization shows us that they have an optimized results when the
time parameter 1s increasing.
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Fig.6 Comparison of the error functions for w2 (1), N =8 and ¥ = 10

The sensitivities of the ignorants, spreaders and stiflers with respect to the initial
conditions at time ¢ are given in Fig. 9. The qualitative behaviour of the dynamics is
understandable from the sensitivity results in Fig. 9 of our model.
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6 Discussion

In this study, we deal with a novel rumour propagation model based on a modeling on
spread with an approximation approach. Besides, the accuracy and sensitivity analyses
have been investigated in order to show the beneficial results in our field of special

s(2)

s(2)
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interest. The algorithm has been logical and straightforward, and designed carefully
and consistently.

We have numerical illustrations to reach rumour propagation model. We apply a
technique in order to investigate approximations between some numerical solutions of
the problem which are also compared with other techniques. Then we have reached for
an error analysis in order to show the efficiency of the present technique. On the other
hand, we consider the sensitivity analyses of the model with related to the parameters.
These results are displayed the readers to give more understanding on the dynamical
system comprehensively as well as open more interesting subjects to research later
o1,

We have some limitations to show more details in the dynamics due to our model.
However, fundamental results have been achieved and implications of the study already
show by our present and planned future modeling and investigation, we can success-
fully control accuracy and complexity of our new tool in applications on diverse OR
fields. We wish to further advance and analyse in detail the model and limitations of
our approach and, whenever needed, to overcome them.

7 Conclusion and outlook

In this study, we have obtained a rumour propagation model for optimization and real-
life decision making based on the dynamics which we represented (Zhao et al. 2019;
Zhang et al. 2012). The role of the parameters in the dynamics show us the interaction
of spread of rumours by ignorants, spreaders and stiflers. This social phenomenon of

@ Springer




Rumour propagation: an operational research. ..

rumour has been assessed by anovel numerical technique from Operational Research
and Information Theory.

We have applied Laguerre collocation method on the ODEs system by consider-
ing a continuous time and given initial conditions. We have shown the efficiency and
accuracy of the approximate solutions by the presented technique with an example.
Tables and figures have demonstrated that the approximation results mean a valuable
contribution as an alternative method in understanding information spread, for eco-
nomic and societal practice. Moreover, the sensitivity analysis and the results have
been visualised by figures. These results give us a better understanding of the model
and the dynamics with respect to our accuracy approach and for the application of our
novel technique.

We will advance, apply and post-process investigate any needed parameter esti-
mation based on one real-world data in our future research work. Furthermore, we
may turn to more explicit forms of time dependence in our differential equations, and
regime-switching phenomena could be addressed as well. In forthcoming studies, our
investigations be OR become employed and extended towards challenges of market-
ing, spread of new fashions, ideologies, but also of democracy and its novel trends and
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