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ABSTRACT

In this study, a problem of scheduling shipping lines for a container supply chain is addressed in order to minimize the
costs of charging ships and the cost of maintaining the inventory of empty containers in the port by considering the
time window of the port and the amount of fuel. This is a hard-NP problem and cannot be solved on a large scale with
precise methods in a logical time. Therefore, to solve and optimize the model, a meta-innovative algorithm, genetic
algorithm, has been used. Also, to increase the effectiveness of the genetic algorithm, the parameters of the algorithm
are adjusted using the Taguchi method. Finally, a number of problems have been solved to show the performance of
this algorithm and its computational results have been compared with the results obtained from GAMS software.
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1. INTRODUCTION

The world fleet expanded to more than nine billion
dollars during 2012, reaching more than 1.5 billion dead-
weight tons (DWT) in 2012, an increase of over 37 per-
cent in just four years. Container transport is regarded as a
crucial part of the world's truly global supply chain. Nu-
merous factors should be taken into account for ship route
design, one of the most important of which is port service
accessibility. In addition, timeline design plays a role in
air pollution due to its impact on ship fuel consumption
(Lei, 2022). Containers are moved by container shipping
companies over scheduled routes. Several products such
as manufactured goods, food, clothing and apparel are
shipped in containers. Generally, shipping services oper-
ate within a fixed schedule and has an appropriate port
arrangement, in a way that arrival and departure time at
ports are specified and planned. Port schedules are posted
on the APL website, and customers can set the delivery
time of their shipments based on the dates announced on
the website and determine the time required for reaching
the port (Salido et al., 2011; Alharbi et al., 2014; Chang et
al., 2010; Qi and Song, 2012). Therefore, container ship-
ping is significant part of the world’s global supply chain.

The network of container shipping lines includes
many shipping lines that must be assessed for the route of
each ship. Scheduling shipping lines is a planned decision
at technical level made every three to six months. Port
service accessibility is the first factor considered for ship
route design, without which the ship route schedule de-
sign 1s not possible. The rotating time decreases when the
ship’s speed is higher in container shipping lines, which
leads to a lower number of ships required for transport.
The present study aims to develop a model for scheduling
shipping lines in each network of container shipping lines
in order to minimize the overall ship costs, including the
costs of charging ships and the cost of maintaining the
inventory of empty containers in the port by considefRlk
the time window of the port and the amount of fuel. The
remainder of the article is structured, as follows: Section
2 presents the research background, and Section 3 ad-
dresses the proposed mathematical model. Section 4 ex-
plains the solution method, and Section 5 focuses on the
generation of initial solution. Section 6 presents computa-
tional results and section seven concludes and makes
suggestions for future studies.

2. RESEARCH BACKGROUND

There are limited studies on the design of ship route
schedule design. The first group of studies is related to de-
signing a schedule at the technical planning level. In a re-
search, Wang and Meng (2012) focused on a tactical-level
liner ship route schedule design in a container shipping

company with a high number of ports and different routes
and a fixed sailing speed on each voyage leg (Wang ef al.,
2014). In another research, X and Song presented an op-
timal vessel schedule to minimize the total expected fuel
consumption. In addition, the rotation time was randomly
considered, meaning that ships arrived at a port of call no
later than the anmmounced time (Trappey et al., 2011). Wang
and Meng (2012) considered a schedule for the ships exist-
ing on the route when uncertainty in port operations and
scheduling were considered while assuming that the ships
could make up for the delay by sailing across the ocean
(Yan ef al, 2009). In their previous research, Wang and
Meng (2012) improved uncertainty at sea and ports by in-
corporating speed optimization. These scholars adopted a
dynamic planning approach to a practical tactical liner ship
route schedule design problem with a port ime window.
They assumed that each port on a ship route is visited only
once in a round-trip journey. In reality, however, there are
many routes where a port can be visited twice (Yin ef al.,
2011). Wang er al. (2015) developed their previous re-
search with the assumption that each port on the route of
the ship can be visited twice. In addition, they focused on
the route of one ship instead of a contaner network with
several shipping routes (Sun et al., 2012).

Yan et al. (2009) developed a container routing model
alming at maximizing operating profit in order to set a
schedule at operationfJevel. In another research, Brouer et
al. (2013) presented the Vessel Schedule Recovery Prob-
lem (VSRP) to evaluate a given disruption scenario and to
select a recovery action balancing the tradeoft between
mcreased fuel consumption and the impact on cargo in the
remainitffffpetwork and the customer service level. Other
studies, such as those developed by Chang et al (2010,
2011), He et al (2010), Du et al. (2011), have focused on
port operations. Sun ef al. (2012) created a general simula-
tion platform, which aims to provide a flexible modeling
system. Yan et al. (2009) introduced a distributed agent
system for dynamic port planning and scheduling and ex-
amined their hypothesis with a case study. Salido et al
(2011) developed a planning technique for solving the con-
tainer stacking problem and a set of optimized allocation
algorithms for solving the berth allocation problem inde-
pendently. Moreover, He ef al. (2010) postulated a strategy
for resolve the issue of sharing intemal porters across mul-
tiple container terminals and selected a near-optimal solu-
tion using an optimization method. [

Alharbi et al. (2014) examined a practical liner ship-
ping schedule design problem with port time windows for
container supply chain networks. They proposed a mixed-
mteger nonlinear non-convex model that incorporates the
availability of ports to minimize the sum of ship cost and
fuel cost while considering the p@ time window. In the
end, the model was reformulated as an integer linear op-
timization model and was solved applying an iterative
optimization approach.
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3. PROPOSED MATHEMATICAL MODEL

In order to better design the mathematical model, the
symbols, variables and parameters are defined first, fol-
lowed by presenting the objective function and related
constraints. Moreover, the necessary explanations of the
details of the mathematical model are provided below.

3.1 Symbols and Variables

The symbols and variables used in the mathematical
model are presented below:

R shows the series of shipping routes and P indicates
the set of ports, in a way that the route of a ship reR s
shown, as follows:

P

rl

~ Py By~ P, 1)

P, P shows the port corresponding to the i-th port
of call, and N, is the number of ports existing on the route
of the ship. The set of ports of call on the r route are de-
fined, as follows:

L={123 .., N} )

i: the time (day) required for a ship to move
from the i-th port to the j-th port on the r
route.

W: total days of the week, W= {0,1,2.3.4.5,6},
where zero is indicative of Saturday, one
shows Sunday,Bld. ..

w1 time of arrival at the i-th port of call on the
rroute, t, €W .

0 the time (:a’] required by a ship to retum

to the first port of call on the r route.

m, the number of ships existing on the r route.
i 3 number of empty containers reserved
at the i-th port on the r route.

z; :[(]]: a binary variable; 1, if the ship arrives at

the i-th port of call on the r route in the w
] day of the week. Otherwise, 0.

A :<1 : a binary variable; [E}if the ship arrives at
the b-th harbor of the i-th port of call on
the r route in the w day of the week. Oth-
erwise, (.

In addition, fuel consumption (tons/miles) is consi-
dered as a function shown below:

g, =1a.(7) (3)
3.2 Parameters

Several parameters are used in the proposed mathe-
matical model, as shown below:
@:  Ship fuel prices (unit/ton)

& 1, if the b € By, port is free in the w day;
otherwise, 0.

fand a,: coefficients in the fuel consumption func-
tion (@, >0)

B, .  the set of docks of the P port

C':  the costs of charging ships existing on the r
route

C:  the cost of m@@htaining the inventory of emp-
ty containers at the i-th port in the r route

L.: the distance between the i-th port and the j-th
port in the r route

7" . the time passed by a ship at the i-th route in
the r route
7"+ the shortest time expected for shipping to the

i-th port in the r route

m™ : the maximum number of ships existing in the
r route

LT - .

x;": the maxfum number of empty containers

reserved at the i-th port in the r route
: the maximum ship speed in the r route
=1 the set of positive integers

Vv

e
¥

According to the mentioned symbols, parameters
and variables, the mathematical model proposed encom-
passes a five-expression objective function and 14 sets of
constraints, as described below:

Min(ZC,"_mr 1 ZZCf.rf_', 1 nz l.a,3) @)
reit iep relt reft el

Accordingly, the objective is to minimize the total
costs of recharging ships, costs of inventory of empty
containers in the port, and costs of fuel.

0=t <6 reR (5)
ty = lrj_j!""_ !—J" reRicl, (6)
2407
oy =ty 5" 17" reRjel, (M)
B =1+ Tm, reR 8)
m, {123 m ) reR ©)
efl23. a0} reR (10)
tr ez reRjiel (11)

Constraints (5) guarantee solution symmetry. Con-
straints (6) indicates that ship cannot travel at speeds in
excess of the speed limit. Constraints (7) defines the rela-
tionship between a time of a round trip. Constraints (8)
shows the time of return to the first port of call on the
return path. Constraints (9) demonstrates that the number
of ships does not exceed the maximum number of ships
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and is also a positive integer. The time of arrival at each
port of call is a non-negative integer shown in Constraints
(11). The second set of constraints show the time of week
for arrival at each port of call in the network:

wz" =" — Tk reRicl

§ i = L vi , (12)
z:":] fCR\fC! (13]
= e{0.1} reRiel, (14)
k,e{0.12...m —1} reRicl, (15)

The day of arrival at the port of call on the route is
shown by constraints (12), whereas constraints (13) dem-
onstrate that each ship must arrive at a port of call in each
week. Constraints (14) define the binary variable, and the

k,; auxiliary variable is defined as a non-negative integer.

The third set of constraints points out the accessibility of
ports:

PIPIEAED DD P CHET RN
FER T reft o7 =2

he B,

”

(16)

we W

< reRicl . beB,welW (17)

i

" e 10.1}

<

reRicl . be B .welW (18)

According to Constraints (16), an available port can-
not serve more than one ship in a day. Moreover, Con-
straints (17) and (18) indicate that each ship can use each
port of call within a week.

4. THE PROPOSED GA SOLUTION METHOD

Since the problem in the present study is an NP-hard
problem, it is impossible to use precise methods for solv-
ing the problem in reasonable time. Therefore, heuristic
or metah@ristic methods should be used to solve the
problem. In this research, the genetics algorithm (GA) is
applied to solve the problem. In addition, GAMS and GA
are used to exhibit the solvability of the model at different
dimensions. The GA implementation stages and the solu-
tion process are explained below.

Algorithm 1. Pseudocode of the genetic algorithm

1:t—0;

2: Forming an initial population [P(t)];

3: [P(1)]; population member assessment and sorting

4: to be performed when the termination conditions
are not realized

5: P'(t); formation of new solutions

6: P'(1); evaluation of new solutions

7: [P'(t)|J Q| applying genetics operators — P(t+
1); the next generation population

8 Tet+1

9: end (until)

5. INITIAL SOLUTION GENERATION

An initial population of chromosomes must be gen-
erated after determining the coding system and specifying
the method of turning each solution mto chromosome. In
most cases, the mitial population is created randomly.
However, heuristic methods are sometimes used to in-
crease algorithm quality and speed to generate the initial
population. The size of the initial population often de-
pends on the other coded string. For instance, the initial
population selected must be definitely larger when there
are 32-bit chromosomes in the problem, compared to 16-
bit chromosomes. The cutoft point is often between 80 to
95%, whereas the probability of mutation is considered
between 0.5 and 1 percent and the population size re-
garded in the range of 20-30. Based on the fit function,
the selected chromosomes are allocated a real amount,
which shows their value, and the GA stages continue. If
there is a very low number of chromosomes, the GA will
be less able to perform less combination operations, and
only a small part of the search space will be discovered.
On the other hand, the process of the GA algorithm will
be slow if there is a very high number of chromosomes.
According to the results, the use of the population will not
be extremely effective as a result of some constraints that
mostly depend on coding and the problem itself.

5.1 Coding

This is probably the most difficult problem solution
stage of the algorithm method. Binary coding is one of
the simplest coding techniques and the best conversion
for genetic operators. In binary conversion, the members
of the population become strings of zeros and ones. Fig-
ure 1 shows the chromosome coding structure.

5.2 Population

In the GA, the concept of population is similar to
what actually exists in normal life. As the first stage of the
GA, it is required to generate a set of doable solutions as
the initial population. The members of this set are often
selected randomly. However, some conditions are used in
the optimization algorithms so that there is not an exces-

A b C d ¢ f

0 1 0 1 0 1 0 1 0 1

Figure 1. Coding structure of chromosomes in N-Ga.
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sively scattered population. In addition, the number of
population members depend on the type of problem. In
fact, the number of members is a parameter that can be
changed by improving the accuracy of solutions and
search convergence speed. While an eight-member popu-
lation might be completely suitable for some problems, a
population with more than 100 members might not be
sufficient for other problems. Therefore, it is best to spe-
cify the population within the range of 10-160 members.

5.3 Population Size

Equation (19) is used to calculate the population size:

‘va =1/ 65y 22t (19]

For instance, if each chromosome has a length of 25,
then we will have: :’\"r..r_.—éxﬁ'“"”', or if the length of
each chromosome is equal to 25, the population size will

be equal to 270.

5.4 Roulette Wheel Selection

The roulette wheel is one of the most suitable ran-
dom selection methods, in which the probability of selec-
tion comresponding to each chromosome is estimated
based on its fitness. In this regard, if f, shows the fit value
of the k-th chromosome, the probability of survival cor-
responding to that chromosome will be as shown in Equa-
tion (20):

__A
R @

Afterwards, the chromosomes are sorted based on P,
and gy, which is the cumulative values of Py, are obtained
using Equation (21):

%=) P (21)

In fact, the roulette wheel creates a random number
between zero and one for selection of each chromosome,
and the chromosome corresponding to the mentioned
number is selected whatever the range of the number is.

5.5 Mutation

In nature, some factors, such as ultraviolet radiation,
cause unpredictable changes in chromosomes. Since GAs
follow the law of evolution, these algorithms use the low-
probability mutation operator. The mutation causes a
search in the intact spaces of the problem, and the most
important responsibility of mutation is to avoid conver-
gence to local optimization. Figure 2 shows mutation and
its function.

Figure 2. Mutation.

In general, mutation prevents the GA from locating
itself in local extremes. Each member is a value deter-
mined by the user that depends on the mutation possibili-

ty (P
5.6 GA Parameter Tuning

The efficiency of metaheuristic algorithms is directly
related to tuning its parameters so that the correct choice
of parameter values increases the efficiency of the algo-
rithm. The improper tuning of parameters could lead to
improper solutions for the problem under study. While
various statistical methods have been proposed for de-
signing test, increasing the number of factors studied,
complex and time-consuming calculations are performed
in using a comprehensive approach such as complete fac-
tor experiments. Taguchi introduced a set of fractional
factor experiments, which specifically reduce the number
of tests required for assessment while maintaining the
required information (1). In this project, control factors of
Taguchi method include parameters of GA, population
size and number of iterations, probability of crossover
performance and probability of mutation performance.
Three levels are used for analyzing the optimal values of
parameters in Taguchi method, as shown in Table 1:

For the factors considered from the standard tables of
orthogonal arrays, the most suitable array is L9, which is
presented in Table 2. The integer values in each column

Table 1. Genetics algorithm factors

Level ] 2 3
Parameter

Population size and num-

b
ber of iterations (80, 150) (100, 200y (150, 300)

Level of Crossover 06 0.7 0.8

Level of Mutation 0.5 0.15 0.25

Table 2. Orthogonal array of L9(3)

fest L1 2 L3
1 1 1

1 2 3 2

2 3 2 3

3 1 3 3

4 2 2 1
5 3 1 2

6 1 > >

7 2 1 3

8 3 3 1

9 3
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shows its level in each test. The goal ,fﬂle method is to
find optimal levels of significant and controllable factors
and minimize the effect of confounding factors. The qualit-
ative features of the values measured from the tests are
tumed into signal to noise (S/N). This rate shows the level
of deviations in the solution variable. In this study, the low-
er the value of objective function, the bet@ Therefore, the
(S/N) ratio has the feature of the larger the better. In the
Taguchi method, this index is defined as Equation (22):

% = —10x log,,(Objective function)’ (22)
A

Five sample problems are considered for the imple-
mentation of the tests. Each of the nine different tests
designed in the orthogonal array are implemented five
times for each problem. Figure 3 shows the value of (S/N)
for different GA levels. As observed, decrease of algo-
rithm deviations occurs when the parameters of the prob-
lem are tuned for the algorithm, as follows: first-level
crossover rate, third-level mutation rate, combination of
the number of initial population and third-level generation,
minimum value of second-level external weight and
combination of number of particles and third-level gener-
ation.

6. COMPUTATIONAL RESULTS

After tuning the optimal levels of GA parameters,
the GA resultsfan be compared with exact solutions of
GAMS 24.1.2 in terms of the value of objective function
and solution time using coding in MATLAB. Equation 23
is applied to measure the relative gap between GAMS and

667
Table 3. Input values of parameters
Parameter Value
B, Uniform (30, 60)
c Uniform (100000, 300000)
(o Uniform (100000, 300000)
L, Uniform (30, 60)
[ Uniform (100, 300)
£ Uniform (100, 300)
£ Uniform (100, 1020)
O Uniform (30, 100)
v Uniform (80, 200)
MATLAB solutions:
Gap= Optimal solution — GAoptimal solution <100 (23)

Optimal solution

Table 3 shows the input values of the most important
parameters of the problem model:

According to the presented model and its solution
methods, some problems are generated as example and
the problem is solved for each example. The results ob-
tained from comparing the solution of 24 example prob-
lems with the results obtained from GA are presented in
Table 4. A comparison of GA results with the optimal
solution of GAMS 24.1.2 shows that the software is able
to achieve an optimal solution in solving large-scale prob-
lems based on GA. On the other hand, the solution time
of problems in two sections of GA and GAMS 24.1.2
indicates less solution time and is associated with a very
slight increase in large scales.

Main Effects Plot (data means) for SN ratios

5.4 1 A 8

5.2 \ [/
W \ /
‘9 5.0 4
% T T T T T T
. 1 E 3 1 2 3
g 5.4
2 /’/

5.2

5.0

1 2 3

Signal-to-noise: Nominal is best (10*Log(Ybar**2fs**2))

Figure 3. Rate of (S/N) for the genetics algorithm at various levels of factors.
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Table 4. Computational results of GAMS and genetics algorithm

Problem Error percentage

Number of Optimal value of Solution time  Optimal value  Solution time of the objective

problems ~ Numberof - Number of GAMS inGAMS  in MATLAB  inMATLAB function (gap)

ports of call ships Number of ships
4 151392 1.550 152258 4.03 0.41% 2
1 7 857295 3.960 859592 2.49 0.21% 2
2 8 1635742 10.872 1642486 4.09 0.10% 3
3 8 2514709 15.850 2530948 6.75 0.49% 4
4 9 4660969 20.121 4670880 9.48 0.93% 3
5 9 8195010 50.569 8201256 17.52 0.82% 6
6 10 13656653 65.121 13765635 22.27 0.23% 5
7 10 4182180 98.458 4192871 42.01 0.35% 6
8 11 7335650 109.852 7345896 50.48 0.64% 5
9 12 24940280 129.155 25042352 80.59 0.51% 6
10 12 46264200 185.191 46864258 110.04 0.99% 7
11 20 111792900 201.765 121893526 137.21 0.99% 3
12 20 191562400 209.432 108582632 162.18 0.11% 2
13 20 213622000 183.957 253855121 182.67 0.84% 4
14 23 122806600 257.621 125705532 202.06 0.26% 3
15 23 80036700 827.831 854397085 272.09 0.77% 6
16 25 814705202 884.457 845210235 408.42 0.39% 4
17 25 650264201 904.856 652264908 435.58 0.75% 4
18 27 113836500 932.818 115836809 523.63 0.29% 4
19 28 - - 105426452 574.78 - 5
20 28 - - 250532658 763.54 - 5
21 35 - - 301258963 974.77 - 6
22 50 - - 351254783 1099.30 - 7
23 55 - - 378965421 1371.51 - 10

24

—®—GAMS —®—Meta-heuristic

1600
1400
1200
1000
800
600
400
200

CPU time

0 5 10 15 20 25 30
Test Problem

Figure4. A comparison of the solution time of different methods.
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1.00%

0.80%

0.60%

0.40%

0.20%

0.00%

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19

Figure 5. Eror percentage of the metaheuristic method in various problems.

As observed in Figure 4, GAMS is unable to solve
all problems. meanwhile, e GA could solve all the prob-
lems in reasonable time. There is a significant difference
between GAMS and GA in terms of solution time with an
mncrease in the problem dimension, which shows that the
mability of GAMS to operate when there is an increase in
the scale of the problem.

According to Figure 5, the error of the meta-heuristic
method is very small among the problems that have pro-
vided the ability to compare the GA with GAMS software,
in a way that the maximum error rate is less than 1%.
This confirms the high efficiency of the GA regarding the
optimization of the mathematical model proposed in the
current research.

7. CONCLUSION @
1

This study modeled a scheduling problem for a
container supply chain in order to minimize costs of
recharging ships and costs of inventory of empty con-
tainers at the port, which is actually a planned decision
technical level. The results of the present study could be
used for real-world problems with a slight change. The
results showed the effectiveness of displacement inside
ports and fuel price on the overall costs, the optimal
number of ships used, and the optimal scheduling table.
The model presented in the current study was solved by
GA for GAMS 24.1.2 at large scales. According to Table
4, the error percentage of the GA objective function was
less than two percent in all solved problems, compared
to tiffoftware, which demonstrated the efficiency of
GA. It 1s not possible to solve the model at a reasonable
time with available processing facilities for scales larger

than 28 ports of call, which justified the use of the me-
taheuristic approach. According to Table 4, the time re-
quired for problem solving with GAMS 24.1.2 was ex-
tremely higher, compared to the GA. Therefore, with
regard to the solutions obtained and very short time re-
quired for problem solving, the GA was reported to have
high efficiency in this regard. It is recommended that
scheduling problems be assessed and compared to con-
tainer routing and the type of cargo transported between
ports.
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