PREDIKSI JUMLAH MAHASISWA PRODI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UIN SUMATERA UTARA MEDAN DENGAN BACKPROPAGATION

SKRIPSI

SITI ZUNAIDA NASUTION 73154020

PROGRAM STUDI MATEMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI SUMATERA UTARA
MEDAN
2019

PREDIKSI JUMLAH MAHASISWA PRODI MATEMATIKA FAKULTAS SAINS DAN TEKNOLOGI UIN SUMATERA UTARA MEDAN DENGAN BACKPROPAGATION

SKRIPSI

Diajukan untuk Memenuhi Syarat Mencapai Gelar Sarjana Matematika (S.Mat) Dalam Sains dan Teknologi

SITI ZUNAIDA NASUTION 73154020

PROGRAM STUDI MATEMATIKA
FAKULTAS SAINS DAN TEKNOLOGI
UNIVERSITAS ISLAM NEGERI SUMATERA UTARA
MEDAN
2019

PERSETUJUAN SKRIPSI

Hal : Surat Persetujuan Skripsi

Lamp:-

Kepada Yth.,

Dekan Fakultas Sains dan Teknologi

Universitas Islam Negeri Sumatera Utara Medan

Assalamu'alaikum Wr. Wb.

Setelah membaca, meneliti, memberikan petunjuk, dan mengoreksi serta mengadakan perbaikan, maka kami selaku pembimbing berpendapat bahwa skripsi saudara,

Nama : Siti Junaida Nasution

Nomor Induk Mahasiswa : 73154020 Program Studi : Matematika

Judul : Prediksi Jumlah Mahasiswa Prodi

Matematika Fakultas Sains dan Teknologi UIN Sumatera Utara Medan Dengan

Backpropagation

dapat disetujui untuk segera di *munaqasyah*kan. Atas perhatiannya kami ucapkan terimakasih.

Medan, 14 November 2019 M 17 Rabiul Awal 1441 H

KomisiPembimbing,

Pembimbing Skripsi I, Pembimbing Skripsi II,

Dr. Riri Syafitri Lubis, M.Si NIP.198407132009122002 Hendra Cipta, M.Si NIB. 1100000063

KEMENTERIAN AGAMA REPUBLIK INDONESIA UNIVERSITAS ISLAM NEGERISUMATERA UTARA MEDAN FAKULTAS SAINS DAN TEKNOLOGI

JI. IAIN No. 1 Medan 20235 Telp. (061) 6615683-6622925, Fax. (061) 6615683 Url: http://saintek.uinsu.ac.id, E-mail: saintek@uinsu.ac.id

PENGESAHAN SKRIPSI

Nomor:043/ST/ST.V/PP.01.1/02/2020

Judul : Prediksi Jumlah Mahasiswa Prodi Matematika Fakultas

Sains dan Teknologi UIN Sumatera Utara Medan Dengan

Backpropagation

Nama : Siti Zunaida Nasution

Nomor Induk Mahasiswa : 73154020 Program Studi : Matematika

Fakultas : Sains dan Teknologi

Telah dipertahankan dihadapan Dewan Penguji Skripsi Program Studi Matematika Fakultas Sains dan Teknologi UIN Sumatera Utara Medan dan dinyatakan **LULUS**.

Padahari/tanggal : Kamis, 14 November 2019

Tempat : Ruang Sidang Fakultas Sains dan Teknologi

Tim Ujian Munaqasyah,

Ketua,

Dr. Sajaratud Dur, ST., MT NIP.197310132005012005

Dewan Penguji,

Penguji I, Penguji II,

Dr. Riri Syafitri Lubis, M.Si
NIP.198407132009122002
Hendra Cipta, M.Si
NIB. 1100000063

Penguji III, Penguji IV,

Dr. Fibri Rakhmawati, M.Si
NIP.198002112003122014
Rina Widyasari, M.Si
NIB.1100000119

Mengesahkan, Dekan Fakultas Sains dan Teknologi UIN Sumatera Utara Medan,

Dr. Mhd. Syahnan, M.A. NIP.

SURAT PERNYATAAN KEASLIAN SKRIPSI

Saya yang bertanda tangan di bawah ini,

Nama : Siti Zunaida Nasution

Nomor Induk Mahasiswa : 73154020

Program Studi : Matematika

Judul : Prediksi Jumlah Mahasiswa Prodi

Matematika Fakultas Sains dan Teknologi

UIN Sumatera Utara Medan Dengan

Backpropagation

Menyatakan bahwa skripsi ini adalah hasil karya saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing disebutkan sumbernya. Apabila dikemudian hari ditemukan plagiat dalam skripsi ini maka saya bersedia menerima sanksi pencabutan gelar akademik yang saya peroleh dan sanksi lainnya sesuai dengan peraturan yang berlaku.

Medan, 14 November 2019

Siti Zunaida Nasution NIM. 73154020

ABSTRAK

Jaringan syaraf tiruan suatu system pemrosesan informasi yang didesain dengan meniru cara kerja otak dalam menyelesaikan masalah dengan melakukan proses belajar. Pada tahun 2015 jumlah mahasiswa matematika mencapai 29 Mahasiswa, pada tahun 2018 jumlah mahasiswa matematika meningkat mencapai 143 mahasiswa sedangkan di tahun 2019 jumlah mahasiswa matematika menurun yaitu mencapai 101 mahasiswa. Berdasarkan hal tersebut diperlukan suatu penelitian tentang jaringan syaraf tiruan untuk mencari jumlah mahasiswa pada tahun 2020. data penelitian ini adalah data sekunder, terdapat hasil prediksi jumlah mahasiswa jurusan matematika adalah 177 orang yang terdiri dari 14 mahasiswa darikota/kabupaten medan, 25 mahasiswa darikota/kabupaten deli serdang, 42 mahasiswa dari kabupaten serdang bedagai, 51 mahasiswa dari kota/kabupaten asahan, dan 45 mahasiswa dari kota/kabupaten yang merupakan lainnya. Besar kemungkinan prediksi jumlah mahasiswa jurusan matematika pada tahun 2020 akan naik.

Kata Kunci: Prediksi, Jaringan Syaraf Tiruan, Jumlah Mahasiswa, Backpropagation

ABSTRACT

A artificial neural network information processing systems designed to mimic how the brain works to solve problems with the learning process. in 2015 the number of math students reached 29 students, in 2018 the number of math students increased to 143 students, while in 2019 the number of students of mathematics declined, reaching 101 students. based on that required a study of the neural network to search for the number of students in 2020. This research data is secondary data, there are the results predicted number of students majoring in mathematics is 177 people, including 14 students from the city / county terrain, 25 students from the city / deli serdang district, 42 students from Bedagai Serdang, 51 students from the city / county grindstone, and 45 students from the city / county which is the other. likely the predicted number of students majoring in mathematics in 2020 will rise.

Key Words: Predicted, Artificial Neural Network, Number Of Student, Backpropagation

KATA PENGANTAR

Syukur Alhamdulillah kepada Allah SWT atas rahmat-Nya sehingga penulis dapat menyelesaikan skripsi yang berjudul "Pengelompokan Kabupaten/Kota Berdasarkan Faktor-Faktor yang Mempengaruhi Tingkat Kemiskinan di Sumatera Utara dengan menggunakan Analisis Klaster.".

Penulisan skripsi ini dapat diselesaikan dengan bantuan baik moril maupun materil serta dorongan dan arahan dari berbagai pihak. Oleh karena itu, penulis mengucapkan terima kasih yang sebesar-besarnya kepada:

- 1. Prof. Dr. Syahrin Harahap, M.A. selaku Rektor UIN Sumatera Utara Medan.
- Dr. Mhd. Syahnan, M.A. selaku Dekan Fakultas Sains dan Teknologi UIN Sumatera Utara Medan.
- 3. Dr. Sajaratud Dur, ST., MT Selaku Ketua Program Studi Matematika Fakultas Sains dan Teknologi UIN Sumatera Utara Medan, serta dosen-dosen dan staff administrasi yang telah membantu selama proses perkuliahan.
- 4. Riri Syafitri Lubis, M.Si dan Hendra Cipta, M.Si selaku Pembimbing Skripsi yang telah memberikan motivasi dan bimbingan selama proses penyelesaian skripsi.
- Riri Syafitri Lubis, M.Si selaku dosen Penasehat Akademik yang telah memberikan bimbingan selama menempuh pendidikan di Fakultas Sain dan Teknologi UIN Sumatera Utara Medan.
- 6. Bapak Kanaekan Nasution dan Ibu Juwita Batu Bara selaku orang tua yang telah membimbing dan mengarahkan dengan penuh kasih sayang.
- 7. Rizal Syahputra Hasibuan dan keluarga besar matematika stambuk 2015 yang senantiasa memberikan tawa, duka, semangat, dan motivasi.

Penulis berharap semoga skripsi ini dapat bermanfaat dan menambah wawasan keilmuan. Kritik dan saran yang sifatnya membangun sangat penulis harapkan untuk perbaikan dimasa yang akan datang.

Medan, 13 November 2019 Penulis,

Siti Zunaida Nasution

DAFTAR ISI

PERSETUJUAN SKRIPSI	i
PENGESAHAN SKRIPSI	ii
PERNYATAAN KEASLIAN SKRIPSI	iii
ABSTRAK	iv
ABSTRACT	v
KATA PENGANTAR	vi
DAFTAR ISI	viii
DAFTAR GAMBAR	X
DAFTAR TABEL	хi
DAFTAR LAMPIRAN	xii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	4
1.3 Batasan Masalah	4
1.4 Tujuan Penelitian	4
1.5 Manfaat Penelitian	4
BAB II TINJAUAN PUSTAKA	5
2.1 Prediksi	5
2.1.1 Defenisi Prediksi	5
2.1.2 Jenis-Jenis Prediksi	6
2.2 Jaringan Syaraf Tiruan	6
2.2.1 Defenisi Jaringan Syaraf Tiruan	6
2.2.2 Aplikasi Jaringan Syaraf Tiruan	8
2.2.3 Arsitektur Jaringan Syaraf Tiruan	8
2.2.4 Metode Pembelajaran Jaringan Syaraf Tiruan	10
2.2.5 Fungsi Aktivasi Jaringan Syaraf Tiruan	11
2.2.6 Bias dan <i>Threshold</i>	15
2.3 Backpropagation	15

2.3.1 Arsitektur Backpropagation	16
2.3.2 Fungsi Aktivasi Backpropagation	17
2.3.3 Algoritma Backpropagation	17
2.3.4 Mempercepat Pelatihan Backpropagation	20
2.4 Penelitian Yang Relevan	21
BAB III METODE PENELITIAN	23
3.1 Lokasi dan Waktu Penelitian	23
2.3.4 Lokasi Penelitian	23
2.3.4 Waktu Penelitian.	23
3.2 Jenis Penelitian	23
3.3 Data dan Sumber Data	23
3.4 Variabel dan Definisi Operasional Variabel	23
3.5 Cara Kerja Penelitian	24
BAB IV PEMBAHASAN	26
4.1 Profil Data Mahasiswa Prodi Matematika Fakultas Sains dan	
Teknologi	26
4.2 Transformasi Data Real Menjadi Data Pelatihan	27
4.3 Peramalan Dengan Menggunakan Jaringan Syaraf Tiruan	29
BAB V KESIMPULAN DAN SARAN	43
5.1 Kesimpulan	43
5.2 Saran	43
DAFTAR PUSTAKA	44
LAMPIRAN-LAMPIRAN	

DAFTAR GAMBAR

Gambar	Judul Gambar	Halama
2.1	Prinsip Dasar Jaringan Syaraf Tiruan	7
2.2	Jaringan Layar Tunggal	9
2.3	Jaringan Layar Jamak	10
2.4	Fungsi Aktivasi Threshold Biner	12
2.5	Fungsi Aktivasi Threshold Bipolar	12
2.6	Fungsi Aktivasi Sigmoid Biner	13
2.7	Fungsi Aktivasi Bipolar	14
2.8	Fungsi Aktivasi Identitas	14
2.9	Jaringan Dengan Bias	15
2.10	Arsitektur Backpropagation	16
3.1	Cara Kerja Penelitian Prediksi Jumlah Mahasiswa Baru UIN Sumatera Utara Medan	24

DAFTAR TABEL

Tabel	Judul Tabel	Halaman
4.1	Data Mahasiswa Baru Prodi Matematika Tahun 2015/2016-2019/2020.	
4.2	Data Hasil Normalisasi Mahasiswa Prodi Matematika Tahun 2015/2016-2019/2020.	
4.3	Data Pelatihan Jaringan	29
4.4	Data Target	29
4.5	Data Pengujian Jaringan.	29
4.6	Nilai Bobot Dari Input Ke Hidden Layer	30
4.7	Nilai Bobot Dari Hidden <i>Layer</i> Ke <i>Output</i>	30
4.8	Nilai Bias Dari Input Ke Hidden Layer	31
4.9	Nilai Bias Hidden Ke Output	31
4.10	Suku Perubahan Bobot Unit Tersembunyi	38
4.11	Bobot Baru Dari Input Layer Ke Hidden Layer	41

DAFTAR LAMPIRAN

Lampiran	Judul Lampiran
1	Data Awal Mahasiswa Prodi Matematika
2	Data Input
3	Data Input Setelah Transformasi
4	Data Pelatihan
5	Data Target
6	Data Pengujian
7	Nilai Bobot (V) Dari <i>Input</i> Ke Lapisan Tersembunyi (<i>Hidden Layer</i>)
8	Nilai Bobot Dari Lapisan Tersembunyi Ke Output
9	Nilai Bias Dari <i>Input</i> Ke Lapisan Tersembunyi
10	Nilai Bias Dari Lapisan Tersembunyi Ke Output
11	Cara Mencari Nilai Bobot Dengan Aplikasi Matlab

BABI

PENDAHULUAN

1.1 Latar Belakang Masalah

Berdasarkan wawancara dengan ketua Prodi Matematika Fakultas dan Teknologi UIN Sumatera Uatara Medan pada tanggal 02 Agustus 2019 menyatakan bahwa Universitas Islam Negeri (UIN) Sumatera Utara Medan merupakan perguruan tinggi Islam negeri yang berada di Medan, Sumatera Utara dan saat ini memiliki delapan Fakultas, dengan tingkat peminatan yang berbedabeda. Salah satu Fakultas yang ada yaitu Fakultas Sains dan Teknologi dan ada lima Program studi (Prodi) pada Fakultas Sains dan Teknologi salah satunya adalah Prodi Matematika. Kemajuan sebuah Prodi dipengaruhi oleh beberapa faktor dan salah satu faktornya adalah mahasiswa yang mendaftar. Semakin banyak mahasiswa yang mendaftar maka tingkat persaingan semakin tinggi. Pembukaan prodi baru dalam bidang umum merupakan daya tarik atau pemicu bagi mahasiswa baru untuk memilih UIN Sumatera Utara Medan sebagai kampus pilihan mereka.

Pada setiap tahun ajaran baru pihak universitas akan menyelenggarakan penerimaan mahasiswa baru. Proses penerimaan mahasiswa baru dilaksanakan dengan sistem terbuka dan diketehui oleh seluruh masyarakat dan tidak membedakan asal usul, suku, dan agama agar tidak terjadi penyimpangan prosedur maupun hasil. Dalam menentukan calon mahasiswa baru dibutuhkan beberapa pertimbangan yang cukup banyak dan rumit.

Jumlah pendaftaran mahasiswa baru di Prodi Matematika setiap tahunnya mengalami peningkatan dan penurunan, sehingga jumlah mahasiswa baru di Prodi Matematika tidak stabil. Untuk hal ini akan lebih baik jika penyelenggara mampu melakukan antisipasi untuk meminimalisir kelemahan yang ada dengan melakukan model prediksi terhadap jumlah mahasiswa baru yang akan masuk. Prediksi jumlah mahasiswa dilakukan untuk menggali inovasi-inovasi dan membuat strategi pemasaran yang baik sehingga jumlah mahasiswa semakin meningkat.

Dalam Surah Luqman ayat 34, dijelaskan tentang prediksi atau menduga sesuatu yang belum pernah terjadi sebelumnya, ayat tersebut berbunyi :

Artinya: sesungguhnya Allah, hanya pada sisi-Nya sajalah pengetahuan tentang Hari Kiamat; dan Dialah Yang Menurunkan Hujan, dan tiada seorang pun yang dapat mengetahui (dengan pasti) apa yang akan di usahakannya besok. Dan tiada seorang pun yang dapat mengetahui di bumi mana dia akan mati. Sesungguhnya Allah Maha Mengetahui Lagi Maha Mengenal.

Kandungan ayat tersebut menerangkan bahwa manusia itu tidak dapat mengetahui dengan pasti apa yang akan diusahakannya besok atau yang akan diperolehnya, namun demikian mereka diwajibkan berusaha. Salah satu hal yang dimaksud dari kata berusaha tersebut adalah menerka atau memprediksi sesuatu yang akan terjadi berdasarkan apa yang pernah terjadi pada masa lampau sesuai dengan yang pernah dicatatkan. Hanya Allah yang mampu mengetahui segala sesuatunya manusia hanya melakukan usaha (Salamah, 1993).

Prediksi merupakan memperkirakan sesuatu yang akan terjadi dimasa yang akan datang berdasarkan data-data sebelumnya. Hasil dari prediksi tidak selalu benar tetapi mendekati. Prediksi biasanya digunakan untuk meminimalkan suatu resiko yang timbul dari suatu masalah yang terjadi, bukan untuk menghindari resiko. Terdapat beberapa metode untuk membuat model dan memprediksi kejadian yang akan datang, salah satu model tersebut adalah Jaringan Syaraf Tiruan. Metode jaringan syaraf tiruan mampu memodelkan permasalahan yang kompleks dengan memetakkan nilai masa lampau dan nilai masa depan dengan proses belajar seperti yang dilakukan oleh manusia.

Jaringan Syaraf Tiruan (JST) merupakan salah satu sistem pemprosesan informasi yang didesain dengan meniru cara kerja otak manusia dalam menyelesaikan suatu masalah dengan melakukan proses belajar melalui perubahan bobot sinopsis. Jaringan syaraf tiruan tercipta sebagai generasi model matematika

dari pemhaman manusia yang didasarkan oleh asumsi pemrosesan informasi terjadi pada elemen sederhana yang disebut *neuron* dan *neuron* mengalir diantara sel syaraf melalui suatu sambungan penghubung, setiap sambungan penghubung memiliki bobot bersesuaian dan setiap sel syaraf merupakan fungsi aktivasi terhadap penjumlahan berbobot yang masuk untuk menentukan keluaran (Puspitaningrum, 2006). Dalam jaringan syaraf tiruan terdapat beberapa teknik yang digunakan, salah satu tekniknya adalah teknik *Backpropagation*. *Backpropagation* merupakan pembelajaran dalam teknik jaringan syaraf tiruan yang sering digunakan untuk menghitung hasil prediksi.

Metode backpropagation merupakan pembelajaran yang terawasi dengan banyak lapisan (multilayer). Backpropagation merupakan metode pembelajaran lanjut yang dikembangkan dari aturan percepton dan hal yang ditiru dari perceptrona adalah tahapan dalam algoritma jaringan (Apriliyah, 2008). Model backpropagation banyak digunakan untuk menyelesaikan suatu masalah yang berkaitan dengan identifikasi, prediksi, pengenalan pola dan sebagainya. Model backpropagation merupakan supervised learning dimana setiap pola input terdapat target output untuk masing-masing pola input. Kelebihan dari backpropagation yaitu dapat melatih jaringan untuk mendapatkan keseimbangan antara kemampuan jaringan untuk mengenali pola yang akan digunakan selama pelatihan serta kemampuan jaringan untuk memberikan respon yang benar terhadap pola masukan yang serupa dengan pola yang dipakai selama pelatihan (Kiptiyah, 2007).

Banyak penelitian yang telah dilakukan mengenai penggunaan Jaringan Syaraf Tiruan *backpropagation*. Adapun penelitian terkait dengan Jaringan Syaraf Tiruan *backpropagation* yaitu pada penelitian yang dilakukan Yuyun Dwi Lestari (2017), mengenai prediksi penjualan jamur diperoleh nilai akurasi yang dilihat dari MSE=0.00099976 pada saat pelatihan dengan nilai epoch 739 dan MSE=0.00055585 pada saat pengujian. Penelitian lain mengenai Jaringan Syaraf Tiruan *backpropagation* dilakukan oleh Deogracias Gama Da Costa Lobo dan Stefanus Santosa (2014) mengenai prediksi penjualan air minum dalam kemasan diperoleh nilai akurasi sebesar 82,6%.

Berdasarkan latar belakang masalah di atas, maka akan dilakukan penelitian tentang prediksi dengan judul "Prediksi Jumlah Mahasiswa Prodi Matematika Fakultas Sains dan Teknologi UIN Sumatera Utara Medan Dengan Metode Backpropagation". Sumber data yang dipergunakan adalah data mahasiswa lima tahun terakhir yaitu dari tahun 2015 sampai tahun 2019.

1.2 Rumusan Masalah

Dari latar belakang di atas, maka akan dirumuskan masalah sebagai berikut: Bagaimana *backpropagation* dapat memprediksi jumlah mahasiswa Prodi Matematika Fakultas Sains dan Teknologi UIN Sumatera Utara Medan tahun 2020?

1.3 Batasan Masalah

Penilitian ini hanya membahas metode *backpropagation* untuk memprediksi jumlah mahasiswa Prodi Matematika Fakultas Sains dan Teknologi UIN Sumatera Utara Medan tahun 2020 berdasarkan data dari tahun 2015 sampai tahun 2019.

1.4 Tujuan Penelitian

Penelitian ini bertujuan untuk memprediksi jumlah mahasiswa dengan metode *backpropagation* pada Prodi Matematika Fakultas Sains dan Teknologi UIN Sumatera Utara Medan tahun 2020.

1.5 Manfaat Penelitian

Adapun manfaat penelitian dari pembahasan ini adalah:

- 1. Sebagai bahan pembelajaran khususnya dalam bidang matematika
- Sebagai bahan pertimbangan bagi pengambil keputusan dalam memprediksi penerimaan mahasiswa pada tahun 2020 Prodi Matematika Fakultas Sains dan Teknologi di UIN Sumatera Utara Medan.

BAB II

TINJAUAN PUSTAKA

2.1 Prediksi

2.1.1 Definisi Prediksi

Prediksi adalah proses peramalan kejadian dimasa yang akan datang berdasarkan data variabel di masa sebelumnya. Dalam prediksi sering digunakan data kuantitatif sebagai pelengkap informasi dalam melakukan peramalan. Sedangkan prakiraan merupakan proses peramalan dan dimasa yang akan datang dengan lebih intuisi (Eddy, 2008).

Secara umum, prediksi yang dapat dilakukan oleh Jaringan Syaraf Tiruan yaitu prediksi runtun waktu (*time series*) sebagai *input* dan taget sebagai *output*. Data yang digunakan pada proses pelatihan yaitu data priode sebelum tahun yang akan diprediksi, data tersebut digunakan untuk menentukan bobot optimal. Setelah bobot optimal di dapatkan dari proses pelatihan, bobot-bobot tersebut digunakan untuk menentukan nilai prediksi jika sistem diuji oleh data yang pernah masuk dalam sistem prediksi (Setiawan, 2008).

Menurut Pakaja (2012), prediksi terbagi dalam empat pola, yaitu:

- 1. *Trend*, yaitu pola data tren menunjukkan pergerakkan data cenderung meningkat atau menurun dalam waktu yang lama.
- Seasonality (musiman), yaitu pola data musiman terbentuk karena faktor musiman, seperti cuaca dan liburan.
- 3. *Cycles* (siklus), yaitu pola data siklus terjadi jika variasi data bergelombang pada durasi lebih dari satu tahun dipengaruhi oleh faktor politik, perubahan ekonomi (ekspansi atau kontraksi) yang dikenal dengan siklus usaha.
- 4. *Horiontal/Stasionary/Random variation*, yaitu pola yang terjadi jika data berfluktuasi di sekitar nilai rata-rata secara acak tanpa membentuk pola yang jelas, seperti pola musiman *trend* ataupun siklus.

2.1.2 Jenis-Jenis Prediksi

Dalam penelitian ini digunakan prediksi jangka waktu pendek. Prediksi dapat dibedakan dari beberapa segi, yaitu dilihat dari jangka waktu prediksi dan dilihat dari sifat prediksi.Jika dilihat dari jangka waktu prediksi yang disusun, maka ramalan dapat dibedakan atas dua macam, yaitu:

- 1. Prediksi jangka waktu panjang, yaitu prediksi yang dilakukan untuk penyusunan hasil prediksi yang jangka waktunya lebih dari satu setengah tahun atau tiga semester.
- Prediksi jangka waktu pendek, yaitu prediksi yang dilakukan untuk penyusunan hasil rediksi dengan jangka waktu yang kurang dari satu setengah tahun atau tiga semester (Mason, 1999).

Berdasarkan sifatnya teknik peramalan ada dua, yaitu:

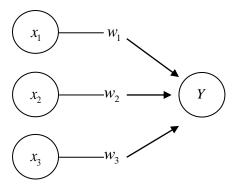
- 1. Prediksi kualitatif, yaitu prediksi yang didasarkan atas data kualitatif pada masa lalu.
- Prediksi kuantitatif, yaitu prediksi yang didasarkan atas data kuantitatif pada masa lalu. Prediksi kuantitatif sangat mengandalkan pada data historis yang dimilikinya (Mason, 1999)

2.2 Jaringan Syaraf Tiruan

2.2.1 Definisi Jaringan Syaraf Tiruan

Jaringan Syaraf Tiruan merupakan salah satu representasi buatan dari otak manusia yang selalu mensimulasikan proses pembelajaran pada otak manusia tersebut. Istilah buatan disini digunakan karena jaringan syaraf ini di implementasikan dengan menggunakan program komputer yang mampu menyelesaikan sejumlah proses perhitungan selama proses pembelajaran (Andrijasa, 2010).

Jaringan syaraf tiruan dibentuk sebagai generalisasi model matematika dari jaringan syaraf bilogi, dengan asumsi bahwa:


- 1. Pemprosesan informasi terjadi pada banyak elemen sederhana (neuron)
- 2. Sinyal dikirimkan diantara *neuron-neuron* melalui penghubung-penghubung

- 3. Penghubung antar neuron memiliki bobot yang akan memperkuat atau memperlemah sinyal
- 4. Untuk menentukan *output*, setiap neuron menggunakan fungsi aktivasi (biasanya bukan fungsi linier) yang dikenakan pada jumlahan *input* yang diterima. Besarnya *output* ini selanjutnya dibandingkan dengan suatu batas ambang (Siang, 2009).

Jaringan Syaraf Tiruan dibentuk oleh tiga hal, yaitu:

- 1. Pola hubungan antar *neuron* (disebut arsitektur jaringan)
- Metode untuk menentukan bobot penghubung (disebut metode training/learning/algoritma)
- 3. Fungsi aktivasi

Sebagai contoh, perhatikan neuron Y pada gambar berikut:

Gambar 2.1 Prinsip Dasar Jaringan Syaraf Tiruan (Siang, 2009)

Y menerima input dari neuron x_1, x_2 dan x_3 dengan bobot hubungan masing-masing adalah w_1, w_2 dan w_3 . Ketiga impuls neuran yang ada dijumlahkan

$$Net = x_1 w_1 + x_2 w_2 + x_3 w_3 (2.1)$$

Besarnya impuls yang diterima oleh Y mengikuti fungsi aktivasi y = f(net). Apabila nilai fungsi aktivasi cukup kuat, maka sinyal akan diteruskan. Apabila nilai fungsi aktivasi cukup kuat, maka sinyal akan diteruskan. Nilai fungsi aktivasi

(keluaran model jaringan) juga dapat dipakai sebgai dasar untuk merubah bobot (Siang, 2009).

2.2.2 Aplikasi Jaringan Syaraf Tiruan

Beberapa aplikasi jaringan syaraf tiruan adalah sebagai berikut:

1. Pengenalan Pola (*Pattern Recognition*)

Jaringan syaraf tiruan dapat dipakai untuk mengenali pola (misalnya huruf, angka, suara atau tanda tangan) yang sudah sedikit berubah. Hal ini mirip dengan otak manusia yang masih mampu mengenali orang yang sudah beberapa waktu tidak menjumpainya (mungkin wajah/bentuk tubuhnya sudah sedikit berubah).

2. Signal Processing

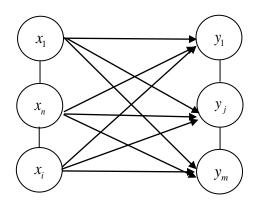
Jaringan syaraf tiruan (model ADALINE) dapat dipkai untuk menekan *noise* dalam saluran telepon.

3. Prediksi

Jaringan syaraf tiruan juga dapat dipakai untuk memprediksi apa yang yang akan terjadi di masa yang akan datang berdasarkan pola kejadian yang ada di masa yang lampau. Ini dapat dilakukan mengikat kemampuan jaringan syaraf tiruan untuk mengingat dan membuat generalisasi dari apa yang sudah ada sebelumnya.

Disamping area-area tersebut, jaringan syaraf tiruan juga dilaporkan dapat menyelesaikan masalah dalam bidang control, kedokteran, dan lain-lain. Meskipun banyak aplikasi menjanjikan yang dapat dilakukan oleh jaringan syaraf tiruan, namun jaringan syaraf tiruan juga memiliki beberapa keterbatasan umum.Pertama adalah ketidak akuratan hasil yang diperoleh. Jaringan syaraf tiruan bekerja berdasarkan pola yang terbentuk pada *input*nya (Siang, 2009).

2.2.3 Arsitektur Jaringan Syaraf Tiruan


Pada jaringan syaraf tiruan, *neuron-neuron* akan dikumpulkan dalam sebuah lapisan yang disebut dengan lapisan *neuron* (*neuron layers*). *Neuron-neuron* pada

satu lapisan akan dihubungkan dengan lapisan-lapisan lainnya. Informasi yang didapatkan pada sebuah *neuron* akan disampaikan ke semua lapisan-lapisan yang ada, mulai dari lapisan masukan sampai dengan lapisan keluaran melalui lapisan tersembunyi (*rhidden laye*). Pada jaringan syaraf tiruan ini tiga lapisan bukanlah sebuah struktur umum karena beberapa jaringan syaraf ada yang tidak memiliki lapisan tersebunyi (Siang, 2009).

Beberapa arsitektur jaringan yang sering dipakai dalam jaringan syaraf tiruan antara lain:

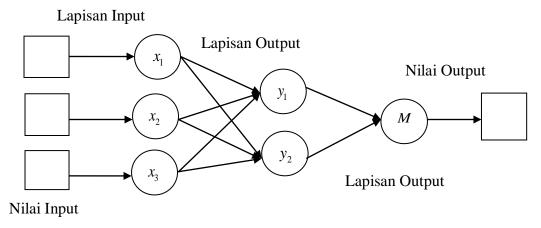
1. Jaringan Layar Tunggal

Dalam jaringan ini, sekumpulan *input neuron* dihubungkan langsung dengan sekumpulan *outputnya*. Dalam beberapa model (missal *perceptron*), hanya ada sebuah unit *neuronoutput*.

Lapisan Input

Lapisan Output

Gambar 2.2 Jaringan Layar Tunggal (Single layer network)


Gambar 2.2 menunjukkan arsitektur jaringan dengan n unit $input(x_1, x_2, ..., x_n)$ dan m buah unit $output(Y_1, Y_2, ..., Y_n)$.

Perhatikan bahwa dalam jaringan ini, semua unit input dihubungkan dengan semua unit *output*, meskipun dengan bobot yang berbeda-beda. tidak ada unit input yang dihubungkan dengan unit *input* lainnya. Demikian pula dengan unit *output* (Siang, 2009).

Besaran w_{ji} menyatakan bobot hubungan antara unit ke-i dalam input dengan unit ke-j dalam output. Bobot-bobot ini saling independen. Selama proses pelatihan, bobot-bobot tersebut akan di modifikasi untuk meningkatkan keakuratan hasil. Model semacam ini tepat digunakan untuk pengenalan pola karena kesederhanaannya (Siang, 2009).

2. Jaringan Layar Jamak (*multi layer network*)

Jaringan layar jamak merupakan perluasan dari layar tunggal. Dalam jaringan ini, selain unit *input* dan *output*, ada unit-unit lain (sering disebut layar tersembunyi). Dimungkinkan pula ada beberapa layar tersembunyi. Sama seperti pada unit *input* dan *output*, unit-unit dalam satu layar tidak saling berhubungan.

Gambar 2.3 Jaringan Layar Jamak (Multi Layer Network)

Gambar diatas merupakan jaringan dengan n buah unit *input*, sebuah layar tersembunyi yang terdiri dari p buah unit dan m buah unit *output*.

Jaringan layar jamak dapat menyelesaikan masalah yang lebih kompleks dibandingkan dengan layar tunggal, meskipun kadangkala proses pelatihan lebih kompleks dan lama (Siang,2009).

2.2.4 Metode Pembelajaran Jaringan Syaraf Tiruan

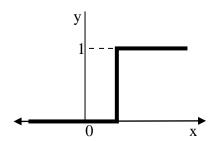
Menurut Fausett (1994), ada beberapa cara pembelajaran atau pelatihan jaringan syaraf tiruan, yaitu:

1. Pembelajaran Terawasi (Supervised Learning)

Pada metode ini setiap pola yang diberikan ke dalam jaringan syaraf tiruan telah diketahui *outputnya*. Dalam pembelajaran terawasi, terdapat sejumlah data yang digunakan untuk melatih jaringan hingga mencapai nilai bobot yang diinginkan. Data-data tersebut berfungsi sebagai guru atau representasi dari sekumpulan sampel data yang digunakan untuk melatih jaringan hingga mencapai nilai yang diinginkan. Pada setiap kali pelatihan, suatu unit masukan diberikan ke jaringan, setelah itu akan diproses oleh jaringan sehingga dihasilkan *output*. Nilai selisih antara pola *output* aktual (*output* yang dihasilkan) dengan pola *output* yang dikehendaki (output target) yang disebut *error* digunakan untuk mengoreksi bobot jaringan syaraf tiruan sehingga jaringan tiruan mampu menghasilkan *output* sedekat mungkin dengan pola target yang telah diketahui oleh jaringan syaraf tiruan, contoh algoritma jaringan syaraf tiruan yang menggunakan metode ini adalah *Hebbian*, *Perceptron*, *ADALINE*, dan *Backpropagation*.

2. Pembelajaran Tak Terawasi (*Unsupervised Learning*)

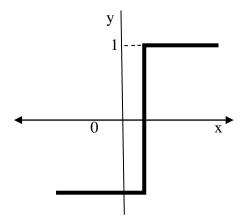
Pada metode ini, target *output* tidak diperlukan. Pada metode ini tidak dapat ditentukan hasil seperti apakah yang diharapkan selama proses pembelajaran, nilai bobot disusun dalam suatu *range* tertentu tergantung pada nilai *input* yang diberikan. Tujuan pembelajaran ini adalah mengelompokkan unit-unit yang hampir sama dalam suatu area tertentu. Pembelajaran ini biasanya sangat cocok untuk klasifikasi pola. Contoh algoritma jaringan syaraf tiruan yang menggunakan metode ini adalah *Competitive*, *Kohonen*, *LVQ* (*Learning Vector Quantization*).


2.2.5 Fungsi Aktivasi Jaringan Syaraf Tiruan

Dalam jaringan syaraf tiruan, fungsi aktivasi dipakai untuk menentukan keluaran suatu neuron. Argumen fungsi aktivasi adalah net masukan (kombinasi linier masukan dan bobotnya). Jika $net = \sum x_i w_i$, maka fungsi aktivasinya adalah $f(net) = f\left(\sum x_i w_i\right)$ (Siang, 2009).

Beberapa fungsi aktivasi yang sering dipakai adalah sebagai berikut:

1. Fungsi threshold (batas ambang)

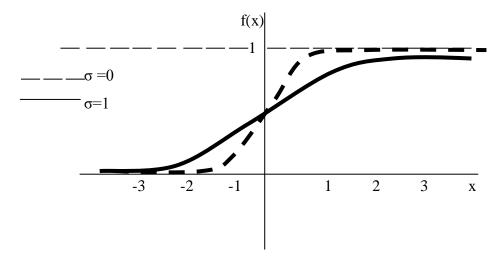

$$f(x) = \begin{cases} 1, \ jikax \ge a \\ 0, \ jikax < a \end{cases}$$
 (2.2)

Gambar 2.4 Fungsi Aktivasi Threshold Biner

Untuk beberapa kasus, fungsi *threshold* yang dibuat tidak berharga 0 atau 1, tapi berharga -1 atau 1 (sering disebut *threshold* bipolar), jadi

$$f(x) = \begin{cases} 1, \ jikax \ge a \\ -1, \ jikax < a \end{cases}$$
 (2.3)

Gambar 2.5 Fungsi Aktivasi Threshold Bipolar

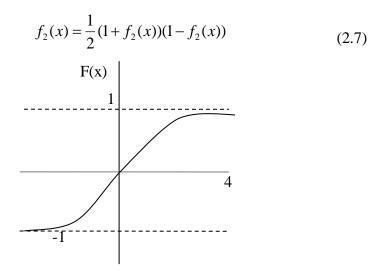

2. Fungsi Sigmoid

Fungsi *sigmoid* sering digunakan karena nilai fungsinya yang terletak antara 0 dan 1 dan dapat diturunkan dengan mudah, fungsi *sigmoid* biner dirumuskan sebagai

$$f(X) = \frac{1}{1 + e^{-x}} \tag{2.4}$$

dengan turunan

$$f'(x) = f(x)(1 - f(x))$$
 (2.5)

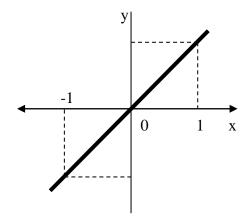


Gambar 2.6 Fungsi Aktivasi Sigmoid Biner

Selain *sigmoid* biner, *sigmoid* bipolar juga sering digunakan dan memiliki range (-1, 1) yang dirumuskan sebagai

$$f_2(x) = 2f_1(x) - 1 (2.6)$$

Dengan turunan



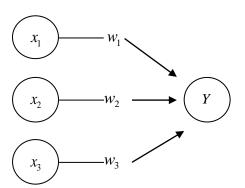
Gambar 2.7 Fungsi Aktivasi Bipolar

3 Fungsi Identitas

Fungsi identitas sering digunakan jika menginginkan *output* jaringan berupa sembarang bilangan riil (bukan hanya pada range [0, 1] atau [-1, 1] dengan defenisi sebagai

$$f'(x) = x \tag{2.8}$$

Gambar 2.8 Fungsi Aktivasi Identitas (Siang, 2009)


2.2.6 Bias dan Threshold

Kadang-kadang dalam jaringan ditambahkan sebuah unit masukan yang nilainya selalu = 1. Unit yang sedemikian itu disebut bias. Bias dapat dipandang sebagai sebuah *input* yang nilainya = 1. Bias berfungsi untuk mengubah nilai *threshold* menjadi = 0 (bukan = a). jika melibatkan bias, maka keluaran unit penjumlah adalah

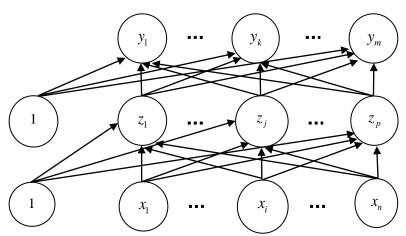
$$net = b + \sum_{i} x_i w_i \tag{2.9}$$

Fungsi aktivasi threshold menjadi:

$$f(x) = \begin{cases} 1, jikax \ge 0 \\ -1, jikax < 0 \end{cases}$$
 (2.10)

Gambar 2.9 Jaringan dengan Bias (Siang, 2009)

2.3 Backpropagation (Propagasi Balik)


Backpropagation merupakan algoritma pembelajaran terawasi yang paling banyak digunakan. Backpropagation melatih jaringan untuk mendapatkan keseimbangan antara kemampuan jaringan mengenali pola yang digunakan selama training serta kemampuan jaringan untuk memberikan respon yang benar terhadap pola input yang serupa (tapi tidak sama) dengan pola yang dipakai selama pelatihan (Siang, 2009).

Di dalam jaringan backpropagation, setiap unit yang berada di input layer berhubungan dengan setiap unit yang ada di hidden layer. Setiap unit yang ada di hidden layer terhubung dengan setiap unit yang ada di output layer. Jaringan ini terdiri dari banyak lapisan (multilayer network). Ketika jaringan ini diberikan pola input sebagai pola pelatihan, maka pola tersebut menuju unit-unit hidden layer untuk selanjutnya diteruskan pada unit-unit di output layer. Kemudian unit-unit output layer akan memberikan respon sebagai output jaringan syaraf tiruan. Saat hasil output tidak sesuai dengan yang diharapkan, maka output akan disebarkan mundur (backward) pada hidden layer kemudian dari hidden layer menuju input layer (Siang, 2009).

2.3.1 Arsitektur Backpropagation

Backpropagation memiliki beberapa unit yang ada dalam satu atau lebih layar tersembunyi.Berdasarkan gambar 2.9 adalah arsitektur back-propagation dengan n buah masukan (ditambah sebuah bias), sebuah layar tersembunyi yang terdiri dari p unit (ditambah sebuah bias), serta m buah unit keluaran.

 V_{ji} merupakan bobot garis dari unit masukan X_i ke unit layar tersembunyi $Z_j(V_{j0}$ merupakan bobot garis yang menghubungkan bias di unit masukan ke unit layar tersembunyi Z_j). W_{kj} Merupakan bobot dari unit layar tersembunyi Z_j ke unit keluaran $Y_k(W_{k0}$ merupakan bobot dari bias di layar tersembunyi ke unit keluaran Z_k) (Siang, 2009).

Gambar 2.10 Arsitektur *Backpropagation* (Siang, 2009)

2.3.2 Fungsi Aktivasi Back-propagation

Dalam *backpropagation*, fungsi aktivasi yang dipakai harus memenuhi beberapa syarat, yaitu kontinu, terdiferensial dengan mudah, dan merupakan fungsi yang tidak turun (Siang, 2009). Fungsi yang sering dipakai dalam aktivasi backpropagation adalah fungsi sigmoid biner yang memiliki range (0, 1).

$$f(x) = \frac{1}{1 + e^{-x}} \operatorname{dengan turunan} f'(x) = f(x)(1 - f(x))$$
 (2.11)

Fungsi lain yang sering dipakai adalah fungsi *sigmoid bipolar* yang bentuk fungsinya mirip dengan fungsi *sigmoid* biner, tapi dengan range (-1,1).

$$f(x) = \frac{2}{1 + e^{-x}} - 1 \operatorname{dengan turunan} \ f'(x) = \frac{(1 + f(x))(1 - f(x))}{2}$$
 (2.12)

2.3.3 Algoritma Backpropagation

Prasityo (2014) mengatakan bahwa, banyak algoritma pelatihan yang tersedia, tetapi algoritma yang paling popular adalah algoritma *backpropagation*. Dalam pelatihan metode *backpropagation* terdapat tiga fase. Fase pertama adalah fase maju yaitu ketika jaringan menghitung data *output*, fase kedua adalah fase mundur jika ada *error* (perbedaan antara target *output* yang diinginkan dengan nilai *output* yang didapatkan), dan fase ketiga adalah modifikasi bobot untuk mengurangi error yang dihasilkan jaringan.

Menurut Siang (2009), algoritma pelatihan untuk jaringan dengan satu hidden layer (dengan fungsi aktivasi sigmoid biner) adalah sebagai berikut:

Langkah 0: Inisialisasi semua bobot dengan bilangan acak kecil

Langkah 1: Jika kondisi penghentian belum terpenuhi, lakukan langkah 2-9

Langkah 2: Untuk setiap pasang data pelatihan, lakukan langkah 3-8

Fase 1: Propagasi Maju

Langkah 3: Tiap input layer $(x_i, i = 1, 2, ..., n)$ menerima sinyal masukkan x_i dan meneruskannya ke hidden layer

Langkah 4: Hitung semua output di hidden layer z_j (j = 1, 2, ..., p).

$$z_{-}in_{j} = v_{0j} + \sum_{i=1}^{n} x_{i}v_{ij}$$
(2.13)

Aplikasikan fungsi aktivasi untuk menghitung sinyal keluaran

$$z_{j} = f(z_{-}in_{j}) = \frac{1}{1 + e^{-z_{-}in_{j}}}$$
(2.14)

Kirim sinyal ke semua output layer

Langkah 5: Hitung semua output di output layer $y_k (k = 1, 2, ..., m)$

$$y_{-}in_{k} = w_{0k} + \sum_{j=1}^{p} z_{j}w_{jk}$$
(2.15)

Aplikasikan fungsi aktivasi untuk menghitung sinyal keluaran

$$y_k = f(y_i i n_k) = \frac{1}{1 + e^{-y_i i n_k}}$$
(2.16)

Fase II: Propagasi Mundur

Langkah 6: Hitung faktor δ pada output *layer* berdasarkan kesalahan di setiap output *layer* y_k (k = 1, 2, ..., m).

$$\delta_k = (t_k - y_k) f'(y_i in_k) = (t_k - y_k) y_k (1 - y_k)$$
(2.17)

 δ_k Merupakan unit kesalahan yang akan dipakai dalam perubahan bobot *layer* dibawahnya (langkah 7).

Hitung suku perubahan bobot w_{kj} (yang akan dipakai untuk merubah bobot w_{jk}) dengan laju percepatan α .

Hitung perubahan bias (yang akan dipakai untuk merubah bobot $^{W_{ok}}$)

$$\Delta w_{ok} = \alpha \ \delta_k; \qquad (k = 1, 2, ..., m)$$
(2.19)

Dan kirimkan $^{\delta_k}$ ke *layer* dibawahnya

Langkah 7: Hitung faktor δ pada *hidden layer* berdasarkan kesalahan di setiap unit hidden layer z_j (j = 1, 2, ..., p).

$$\delta_{-}net_{j} = \sum_{k=1}^{m} \delta_{k} w_{jk}$$
 (2.20)

Faktor δ *hidden layer*

$$\delta_{j} = \delta_{-} net_{j} f'(z_{-} net_{j}) = \delta_{-} net_{j} z_{j} (1 - z_{j})$$
(2.21)

Hitung perubahan bobot v_{ij} (yang dipakai nanti untuk merubah bobot v_{ij})

$$\Delta v_{ij} = \alpha \ \delta_j x_i;$$
 $(j = 1, 2, ..., p; i = 0, 1, ..., n)$ (2.22)

Fase III: Perubahan Bobot

Langkah 8: Hitung semua perubahan bobot

Perubahan bobot garis yang menuju ke *output layer*

$$w_{jk}(baru) = w_{jk}(lama) + \Delta w_{jk}, (k = 1, 2, ..., m; j = 0, 1, ..., p)$$
 (2.23)

Perubahan bobot garis yang menuju ke hidden layer

$$v_{ij}(baru) = v_{ij}(lama) + \Delta v_{ij}$$
 $(j = 1, ..., ; i = 1, 2, ..., n)$ (2.24)

Langkah 9: Proses pelatihan terhenti

Setelah semua pelatiahn telah dilakukan, jaringan dapat dipakai untuk pengenalan pola. Dalam hal ini, hanya propagasi maju (langkah 4 dan 5) saja yang dipakai untuk menuntukan output jaringan. Apabila fungsi aktivasi yang dipakai bukan sigmoid biner, maka langkah 4 dan 5 harus disesuaikan. Demikian juga turunannya pada langkah 6 dan 7.

Dalam beberapa kasus pelatihan yang dilakukan memerlukan iterasi yang banyak sehingga membuat proses pelatihan menjadi lama. Untuk mempercepat iterasi dapat dilakukan dengan parameter α atau laju pemahaman. Nilai α terletak antara 0 dan 1 ($0 \le \alpha \le 1$). Jika harga α semakin besar, maka iterasi yang dipakai semakin sedikit. Hal ini menyebabkan pola yang sudah benar menjadi rusak sehingga pemahaman menjadi lambat. Proses pelatihan yang baik dipengaruhi pada pemilihan bobot awal karena bobot awal sangat memengaruhi apakah jaringan mencapai titik minimum lokal atau global, dan seberapa cepat konvergensinya. Oleh karena itu, dalam standar backpropagation, bobot dan bias diisi dengan bilangan acak kecil dan biasanya bobot awal diinisialisasi secara random dengan nilai antara -0,5 sampai 0,5 (atau -1 sampai 1 atau interval yang lainnya).

2.3.4 Mempercepat Pelatihan Backpropagation

Metode *standart backpropagation* seringkali terlalu lambat untuk keperluan prkatis. Beberapa modifikasi dilakukan terhadap *standart backpropagation* dengan cara mengganti fungsi pelatihannya.

1. Metode Penurunan *Gradien* dengan Momentum (*Traingdm*)

Metode ini merupakan metode yang paling sederhana, tapi metode penurunan *gradien* sangat lambat dalam kecepatan proses iterasinya. Ini terjadi karena kadang-kadang arah penurunan tercepat bukanlah arah yang tepat untuk mencapai titik minimumnya globalnya.

2. Variabel Laju Pemahaman (*Traingda*, *Traingdx*)

Dalam standart *backpropagation*, laju pemahaman berupa suatu konstanta yang nilainya tetap selama iterasi. Akibatnya, unjuk kerja algoritma sangat dipengaruhi oleh besarnya laju pemahaman yang dipakai.Secara praktis, sulit untuk menuntukan besarnya laju pemahaman yang saling optimal sebelum pelatihan dilakukan. Laju pemahaman yang terlalu besar maupun terlalu kecil akan menyebabkan pelatihan menjadi lambat.

3. Resilient Back-propagation (trainrp)

Jaringan *backpropagation* umumnya menggunakan fungsi aktivasi sigmoid. Fungsi sigmoid akan menerima masukan dari *range* tak berhingga menjadi keluaran pada range [0, 1]

4. Algoritma *Gradien Conjugate* (traincgt, traincgp, traincgb)

Dalam *standart backpropagation*, bobot dimodifikasi pada arah penurunan tercepat. Meskipun penurunan fungsi berjalan cepat, tapi tidak menjamin akan konvergen dengan cepat. Dalam algoritma *gradient conjugate*, pencarian dilakukan sepanjang arah *conjugate* (Siang, 2009)

2.4 Penelitian Yang Relevan

Penelitian ini dikembangkan dari beberapa referensi yang mempunyai keterkaitan dengan metode penelitian. Penggunaan referensi ini ditujukan untuk memberikan batasan-batasan terhadap metode dan sistem yang nantinya akan dikembangkan lebih lanjut. Berikut uraian dari beberapa referensi tersebut.

Yuyun Dwi Lestari (2017), melakukan penelitian tentang Jaringan Syaraf Tiruan Untuk Prediksi Penjualan Jamur Menggunakan Algoritma Propagation. Penelitian ini membahas prediksi penjualan jamur menggunakan backpropagation dengan nialai akurasi dilihat yang MSE=0.00099976 pada saat pelatihan epoch dengan nilai 739 dan MSE=0.00055585 pada saat pengujian.

Penelitian serupa juga pernah dilakuakn oleh Deogracias Gama Da Costa Lobo dan Stefanus Santosa (2014) dengan judul Prediksi Penjualan Air Minum Dalam Kemasan Menggunakan Jaringan Syaraf Tiruan *Resilient Propagation*. Pada kesimpulan dari jurnal menyatakan bahwa nilai akurasi sebesar 82,6%.

Maria Agustin dan Toni Prahasto (2012) yang berjudul "Penggunaan Jaringan Syaraf Tiruan Back-propagation Untuk Seleksi Penerimaan Mahasiswa Baru Pada Jurusan Teknik Komputer Di Politeknik Negeri Sriwijaya". Dilaksanakannya penelitian ini bertujuan untuk membantu penyeleksian calon mahasiswa baru. Hasil penelitian ini adalah jaringan syaraf tiruan dengan 1 hidden layer, dengan jumlah neuron 50, iterasi 1000 dengan fungsi mampu mendekati regresi 0.4822. Jaringan syaraf tiruan 2 hidden layer, dengan jumlah neuron 50, iterasi 4000 dengan fungsi aktivasi testing mampu mendekati regresi 0.7944. Jaringan syaraf tiruan dengan 3 hidden layer, dengan jumlah neuron 35, iterasi 5000 dengan fungsi aktivasi testing mampu mendekati regresi 0.8563.

Penelitian lain mengenai metode *backpropagatio*n yaitu jurnal internasional dengan judul Diabetes *Detection Using Artificial Neural Networks* & *Backpropagation Algorithm*. Penelitian ini ditulis oleh (Divya dkk, 2013). Beberapa parameter yang digunakan pada penelitian ini ialah jumlah kehamilan, glukosa, BP, lipatan kulit, insulin, indeks massa tubuh, silsilah dan usia. Didapat hasil pengujian dengan *root mean of squared errors* (RMSE) sebanyak 0,019%.

Alven Safik Ritongga dan Surya Atmojo telah menyelesaikan yang berjudul Pengembangan Model Jaringan Syaraf Tiruan Untuk Memprediksi Jumlah Mahasiswa Baru Di Pts Surabaya (Studi Kasus Universtas Wijaya Putra). Hasil penelitian ini menunjukkan bahwa Indeks statistic jaringan syaraf tiruan backpropagation, MAE= 0,2129, RMSE=0, 2752, dan error 13,3217%.

BAB III

METODE PENELITIAN

3.1 Lokasi Dan Waktu Penelitian

3.1.1 Lokasi Penelitian

Penelitian ini dilaksanakan di Prodi Matematika Fakultas Sains dan Teknologi UIN Sumatera Utara Medan, berlokasi Jl. IAIN No.1 Medan, Kec.Medan Timur.

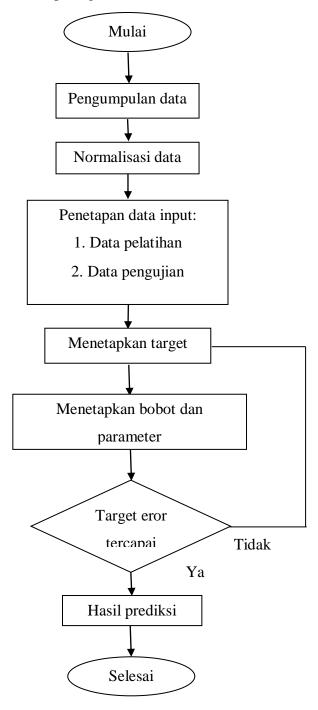
3.1.2 Waktu Penelitian

Penelitian ini dilaksanakan dari bulan Maret 2019 sampai bulan November 2019.

3.2 Jenis Penelitian

Jenis penelitian yang digunakan dalam penelitian ini adalah penelitian terapan atau *applied research*.

3.3 Data dan Sumber data


Data yang digunakan dalam penelitian ini adalah data sekunder yang diambil dari data mahasiswa dari tahun 2015 sampai 2019 pada Universitas Islam Negeri Sumatera Utara Medan.

3.4 Variabel dan Defenisi Operasional Variabel

Variabel respon yang digunakan dalam penelitian ini adalah variabel asal daerah mahasiswa (X) sebagai data inputan, Unit output merupakan solusi dari uni input (Y) dan Unit tersembunyi (Hidden Layer) adalah merupakan lapisan yang tidak terkoneksi secara langsung dengan lapisan input atau output. Adapun defenisi Operasional Variabel yang digunakan pada penelitian ini adalah X adalah data mahasiswa antara tahun 2015-2019, Y adalah hasil prediksi mahasiswa berdasarkan data mahasiswa yang ada.

3.5 Cara Kerja Penelitian

Cara kerja penelitian prediksi jumlah mahasiswa baru di UIN Sumatera Utara Medan ditunjukkan seperti gambar 3.1

Gambar 3.1 Cara Kerja Penelitian prediksi jumlah mahasiswa baru UIN Sumatera Utara Medan

Berikut ini penjelasan kerangka pemikiran prediksi jumlah mahasiswa baru yang telah digambarkan :

Pelatihan data dengan backpropagationterdiri dari

- 1. Menentukan arsitektur jaringan, dilakukan beberapa kali percobaan untuk mendapatkan jaringan terbaik dengan langkah-langkah sebagai berikut:
- a. Mengumpulkan data, normalisasi data, membagi data menjadi 2, yaitu data pelatihan dan data pengujian, dan tentukan masing-masing target pada pelatihan dan pengujian
- b. memasukkan data pelatihan yang telah dinormalisasikan. Tentukan hidden layer, output, fungsi aktivasi dan algoritma pelatihan.
- c. Menetapkan bobot awal
- d. Menetapkan parameter yang akan digunakan pada proses pelatihan
- e.Setelah mendapatkan hasil simulasi kemudian di normalisasi, yaitu mengembalikan kembali nilai hasil prediksi jaringan ke bentuk data semula (sebelum dinormalisasikan) menggunakan rumus berikut:

$$Z = \frac{X - X_{\min}}{X_{\max} - X_{\min}} \cdot (B_{\max} - B_{\min}) + B_{\min}$$
 (3.1)

Dengan:

X = Data input

 X_{\min} = Data X minimum

 X_{max} = Data X maximum

 $B_{\rm max}$ = Batas atas interval

 B_{\min} = Batas bawah interval

BAB IV HASIL DAN PEMBAHASAN

4.1 Profil Data Mahasiswa Prodi Matematika Fakultas Sains dan Teknologi

Data mahasiswa prodi matematika fakultas sains dan teknologi universitas islam negeri sumatera utara tahun ajaran 2015-2019 yang terbagi dalam beberapa kota dan sebagai sampelnya:

Tabel 4.1 Data Mahasiswa Baru Prodi Matematika Tahun 2015/2016-2019/2020

Kota/	Tahun				
Kabupaten	2015	2016	2017	2018	2019
	(x^1)	(x^2)	(x^3)	(x^4)	(x^5)
Medan	14	15	34	46	31
D. Serdang	3	18	26	34	16
S. Bedagai	1	4	4	7	5
Asahan	1	4	3	4	3
Kota Lain	10	26	43	52	46
Total	29	67	110	143	101
Rata-Rata	5.8000	13.4000	22.0000	28.6000	20.2000
Variasi	34.7000	89.8000	321.5000	487.000	331.7000
Std. Variansi	5.8907	9.4763	17.9304	22.0862	18.2126

Pada Tabel 4.1 merupakan data realisasi mahasiswa Prodi Matematika Fakultas Sains dan Teknologi UIN Sumatera Utara Medan dimulai dari tahun 2015 sampai tahun 2019 dan ringkasan statistiknya. Jika dilihat dari nilai standar deviasi mahasiswa yang banyak mendaftar di Prodi matematika adalah pada tahun 2018 namun data diatas jika dilihat dari tahun maka tahun 2018 memiliki nilai standardeviasi dan variansi yang tinggi yang artinya datanya beragam jika dibandingkan dengan data mahasiswa dari tahun lainnya. Jumlah mahasiswa yang masuk paling besar yaitu terjadi pada tahun 2018.

4.2 Transformasi Data Real Menjadi Data Pelatihan

Langkah awal dalam melakukan transformasi adalah menentukan variabel (x), kemudian menentukan nilai maksimum dan nilai minimum pada data. Berdasarkan data pada Tabel 4.1 didapatkan data tertinggi dan terendah, yaitu:

Nilai data maksimum = 52 Nilai data minimum = 1

Dengan transformasi ini maka data terkecil akan menjadi 0,1 dan data terbesar menjadi 0.9.Berikut proses transformasi beberapa data secara manual.

1. Tahun (2015/2016) atau X_1

Medan : (0.8(14-1)/(52-1)) + 0.1 = 0.3039

Deli Serdang : (0.8(3-1) / (52-1)) + 0.1 = 0.1314

Serdang Bedagai : (0.8(1-1) / (52-1)) + 0.1 = 0.1000

Asahan : (0.8(1-1)/(52-1)) + 0.1 = 0.1000

Kota Lain : (0.8(10-1)/(52-1)) + 0.1 = 0.2412

2. Tahun (2016/2017) atau X_2

Medan : (0.8(15-1)/(52-1)) + 0.1 = 0.3196

Deli Serdang : (0.8(18-1)/(52-1)) + 0.1 = 0.3666

Serdang Bedagai : (0.8(4-1)/(52-1)) + 0.1 = 0.1471

Asahan : (0.8(4-1)/(52-1)) + 0.1 = 0.1471

Kota Lain : (0.8(26-1) / (52-1)) + 0.1 = 0.4922

3. Tahun (2017/2018) atau X_3

Medan : (0.8(34-1)/(52-1)) + 0.1 = 0.6176

Deli Serdang : (0.8 (26-1) / (52-1)) + 0.1 = 0.4922

Serdang Bedagai : (0.8 (4-1) / (52-1)) + 0.1 = 0.1471

Asahan : (0.8(3-1)/(52-1)) + 0.1 = 0.1314

Kota Lain : (0.8 (43-1) / (52-1)) + 0.1 = 0.7588

4. Tahun (2018/2019) atau X_4

Medan : (0.8 (46-1) / (52-1)) + 0.1 = 0.8059

Deli Serdang : (0.8 (34-1) / (52-1)) + 0.1 = 0.6176

Serdang Bedagai : (0.8(7-1) / (52-1)) + 0.1 = 0.1941

Asahan : (0.8(4-1)/(52-1)) + 0.1 = 0.1471

Kota Lain : (0.8(52-1)/(52-1)) + 0.1 = 0.9000

5. Tahun (2019/2020) atau X_5

Medan : (0.8 (31-1) / (52-1)) + 0.1 = 0.5706

Deli Serdang : (0.8 (16-1) / (52-1)) + 0.1 = 0.3353

Serdang Bedagai : (0.8 (5-1) / (52-1)) + 0.1 = 0.1627

Asahan : (0.8 (3-1) / (52-1)) + 0.1 = 0.1314

Kota Lain : (0.8 (46-1) / (52-1)) + 0.1 = 0.8059

Tabel 4.2 Data Hasil Normalisasi Mahasiswa Prodi Mtematika

Kota/		Tahun			
Kabupaten	X_1	X_2	X_3	X_4	X_5
Medan	0.3039	0.3196	0.6176	0.8059	0.5706
D. Serdang	0.1314	0.3666	0.4922	0.6176	0.3353
S. Bedagai	0.1000	0.1471	0.1471	0.1941	0.1627
Asahan	0.1000	0.1471	0.1314	0.1471	0.1314
Kota Lain	0.2412	0.4922	0.7588	0.9000	0.8059

Data yang digunakan untuk pelatihan jaringan menggunakan data mahasiswa pada tahun 2015/2016 hingga tahun 2018/2019, sedangkan untuk data penggujian jaringan menggunakan data dari tahun 2019/2020.

Table 4.3 Data Pelatihan Jaringan

Pola	X_1	X_2	X_3	X_4	X_5
1	0.3039	0.3196	0.6176	0.8059	0.5706
2	0.1314	0.3666	0.4922	0.6176	0.3353
3	0.1000	0.1471	0.1471	0.1941	0.1627
4	0.1000	0.1471	0.1314	0.1471	0.1314
5	0.2412	0.4922	0.7588	0.9000	0.8059

Tabel 4.4 Data Target

Pola	X_1	X_2	X_3	X_4	X_5
6	2.6176	1.9431	0.7510	0.6570	3.1981

Tabel 4.5 Data Pengujian Jaringan

Pola	X_1	X_2	X_3	X_4	X_5
2	0.1314	0.3666	0.4922	0.6176	0.3353
3	0.1000	0.1471	0.1471	0.1941	0.1627
4	0.1000	0.1471	0.1314	0.1471	0.1314
5	0.2412	0.4922	0.7588	0.9000	0.8059
6	2.6176	1.9431	0.7510	0.6570	3.1981

4.3 Peramalan Dengan Menggunakan Jaringan Syaraf Tiruan

1. Perencanaan Arsitektur Jaringan Syaraf Tiruan

Pada penelitian ini arsitektur jaringan syaraf tiruan yang digunakan dengan algoritma backpropagation dengan menggunakan fungsi aktivasi sigmoid, yang terdiri dari:

- a.Lapisan masukan (input)
- b. Lapisan tersembunyi (hidden layer) atau
- c. Lapisan keluaran (output)

Pada analisa ini, nilai bobot dan bias ditentukan secara acak. Inisialisasi bobot dan bias secara acak dilakukan dengan menggunakan syntax matlab yaitu dengan:

- a. Bobot pada layar input ke hidden layer : net.IW{1,1}
- b. Bobot pada layar hidden ke output : net.LW{2,1}
- c. Bobot bias pada layar hidden : net.b{1}
- d. Bobot bias pada layar output : net.b{2}

2.Pelatihan Jaringan Syaraf Tiruan

Langkah 1: Inisialisasi bobot dan bias, nilai bobot dan bias ditentukan secara acak dengan menggunakan fungsi matlab.

a.Berikan nilai bobot (V) dari input ke lapisan tersembunyi (hidden layer)

Tabel 4.6 Nilai Bobot Dari Input Ke Hidden Layer

Bobot	Z_1	Z_2	Z_3	Z_4	Z_5
v_1	2.5025	1.4642	0.6225	-0.5057	-2.4269
v_2	-1.6746	-0.2433	1.8817	2.7920	-0.9080
v_3	0.4717	-2.2607	1.9518	1.9273	1.4331
v_4	-0.0407	1.9801	1.4734	-0.5166	-2.9258
v_5	2.0471	-0.2868	-1.6923	2.0560	-1.8901

b. Berikan nilai bobot dari lapisan tersembunyi ke *output*

Tabel 4.7 Nilai Bobot Dari Hidden Layer ke Output

Bobot	Y
w_1	-3.8498
w_2	1.8899
w_3	-0.0084
w_4	-1.9547
W_5	3.8528

c. Berikan nilai bias (v_{i0}) dari *input* ke lapisan tersembunyi (*hidden layer*)

Tabel 4.8 Nilai Bias Dari Input Ke Hidden Layer

Bias	1	2	3	4	5
v_j	-0.6194	-0.1415	0.4340	-0.3951	0.0449

d. Berikan nilai bias (w_{i0}) dari lapisan tersembunyi ke *output*

Tabel 4.9 Nilai Bias Hidden Ke Output

Bias	1
w_j	-0.2878

Langkah 2: Menghitung keluaran dari *hidden layer* (z) dengan menggunakan persamaan

$$Z_n net_j = \sum_{i=1}^{2} v_{ji} j_i$$

$$Z_net_1 = v_{j1} + (j_1 * v_{11}) + (j_2 * v_{21}) + (j_3 * v_{31}) + (j_4 * v_{41}) + (j_5 * v_{51})$$

$$Z_net_1 = (-0.6194) + (0.3039*2.5025) + (0.3196*(-1.6746)) + (0.6176*0.4717) + (0.8059*(-0.0407)) + (0.5706*2.0471)$$

= 2.1684

$$Z_net_2 = v_{j2} + (j_1 * v_{12}) + (j_2 * v_{22}) + (j_3 * v_{32}) + (j_4 * v_{42}) + (j_5 * v_{52})$$

$$Z_net_2 = (-0.1415) + (0.3039*1.4642) + (0.3196*(-0.2433)) + (0.6176*(-2.2607)) + (0.8059*1.9801) + (0.5706*(-0.2868))$$

= 1.4444

$$Z_net_3 = v_{j3} + (j_1 * v_{13}) + (j_2 * v_{23}) + (j_3 * v_{33}) + (j_4 * v_{43}) + (j_5 * v_{53})$$

$$\begin{split} Z_net_3 &= (0.4340) + (0.3039*0.6225) + (0.3196*1.8817) + (0.6176*1.9518) + \\ &\quad (0.8059*1.4734) + (0.5706*(-1.6923)) \end{split}$$

=-2.6518

$$Z_net_4 = v_{i4} + (j_1 * v_{14}) + (j_2 * v_{24}) + (j_3 * v_{34}) + (j_4 * v_{44}) + (j_5 * v_{54})$$

$$Z_net_4 = (-0.3951) + (0.3039*(-0.5057)) + (0.3196*2.7920) + (0.6176*1.9273) + (0.8059*(-0.5166)) + (0.5706*2.0560)$$

= 2.2907

$$Z_net_5 = v_{j5} + (j_1 * v_{15}) + (j_2 * v_{25}) + (j_3 * v_{35}) + (j_4 * v_{45}) + (j_5 * v_{55})$$

$$\begin{split} Z_net_5 &= 0.0449 + (0.3039*(-2.4269)) + (0.3196*(-0.9080)) + (0.6176*1.4331) + \\ &\quad (0.8059*(-2.9258)) + (0.5706*(-1.8901)) \end{split}$$

= -3.5341

$$Z_1 = \text{sigmoid } [2.1684] = \frac{1}{1 + e^{-Z_{-net_j}}} = 0.8974$$

$$Z_2 = \text{sigmoid } [1.4444] = \frac{1}{1 + e^{-Z_n net_j}} = 0.8091$$

$$Z_3 = \text{sigmoid } [2.6518] = \frac{1}{1 + e^{-Z_n net_j}} = 0.9341$$

$$Z_4 = \text{sigmoid } [2.2907] = \frac{1}{1 + e^{-Z_n net_j}} = 0.9081$$

$$Z_5 = \text{sigmoid } [-3.5341] = \frac{1}{1 + e^{-Z_n net_j}} = 0.0284$$

Langkah 3 : Menghitung keluaran unit Y_k dengan menggunakan persamaan

$$y_{-}in_{k} = w_{0k} + \sum_{j=1}^{p} z_{j}w_{jk}$$

$$= (-0.2878) + (0.8974*(-3.8498) + (0.8091*1.8899) + (0.9341*(-0.0084) + (0.9081*(-1.9547)) + (0.0284*3.8528)$$

= -3.8870

$$Y = f(Y_net) = \frac{1}{1 + e^{-Y_net_j}} = 0.9799$$

Langkah 4: Menghitung faktor δ di unit keluaran Y_k dengan menggunakan persamaan :

$$\delta_k = (t_k - y_k) f'(y_i i n_k) = (t_k - y_k) y_k (1 - y_k)$$

$$\delta_k = (0 - 0.9799) * 0.9799 (1-0.9799) \delta_k$$

= -0.0193

Hitung suku perubahan bobot W_{kj} (yang akan digunakan untuk merubah bobot W_{kj}) dengan laju pelatihan $\alpha=0.1$ dengan persamaan :

$$\Delta W_{kj} = \alpha \, \delta_k Z_j$$

$$\Delta W_{10} = \alpha \delta_k Z_j$$

= 0.1 * (-0.0193) * 1
= -0.0019

$$\Delta W_{11} = \alpha \delta_k Z_2$$

= 0.1 * (-0.0193) * 0.8974
= -0.0017

$$\Delta W_{12} = \alpha \delta_k Z_3$$

= 0.1 * (-0.0193) * 0.8091
= -0.0016

$$\Delta W_{13} = \alpha \, \delta_k Z_4$$

$$= 0.1 * (-0.0193) * 0.9341$$

$$= -0.0018$$

$$\Delta W_{14} = \alpha \, \delta_k Z_4$$

$$= 0.1 * (-0.0193) * 0.9081$$

$$= -0.0018$$

$$\Delta W_{15} = \alpha \delta_k Z_5$$

= 0.1 * (-0.0193) * 0.0284
= -5.4812

Langkah 5 : Hitung penjumlahan kesalahan dari unit tersembunyi dengan persamaan

$$\delta_{net_{j}} = \sum_{k=1}^{m} \delta_{k} w_{jk}$$

$$\delta_net_1 = (-0.0193) * (-3.8498)$$

$$= 0.0743$$

$$\delta_net_2 = (-0.0193) * 1.8899$$

= -0.0365

$$\delta_net_3 = (-0.0193) * (-0.0084)$$

= -0.0002

$$\delta_net_4 = (-0.0193) * (-1.9547)$$

= 0.0377

$$\delta_net_5 = (-0.0193) * 3.8528$$

= -0.0744

Kemudian hitung faktor kesalahan δ di unit tersembunyi dengan persamaan :

$$\delta_j = \delta_n net_j f'(z_n net_j) = \delta_n net_j z_j (1 - z_j)$$

$$\delta_1 = 0.0743 * 0.8974 * (1-0.8974)$$

= 0.0068

$$\delta_2$$
 = (-0.0365) * 0.8091 * (1-0.8091)
= 0.0056

$$\delta_3 = 0.0002 * 0.9341 * (1-0.9341)$$

= 1.2311

$$\delta_4$$
 = (0.0377) * 0.9081 * (1-0.9081)
= 0.0031
 δ_5 = (-0.0744) * 0.0284 * (1-0.0284)

$$= -0.0020$$

Hitung suku perubahan bobot ke unit tersembunyi dengan persamaan:

$$\Delta v_{ij} = \alpha \ \delta_j x_i$$
; dengan $\alpha = 0.1$

$$\Delta v_{11} = 0.1 * (0.0068) * (0.3039)$$

= 0.0002

$$\Delta v_{21} = 0.1 * (0.0068) * (0.1314)$$

= 8.9352

$$\Delta v_{31} = 0.1 * (0.0068) * (0.1000)$$

= 6.8000

$$\Delta v_{41} = 0.1 * (0.0068) * (0.1000)$$

= 6.8000

$$\Delta v_{51} = 0.1 * (0.0068) * (0.2412)$$

= 0.0002

$$\Delta v_{12} = 0.1 * (0.0056) * (0.3196)$$

= 0.0002

$$\Delta v_{22} = 0.1 * (0.0056) * (0.3666)$$

=0.0002

$$\Delta v_{32} = 0.1 * (0.0056) * (0.1471)$$

= 8.2376

$$\Delta v_{42} \quad = 0.1 * (0.0056) * (0.1471)$$

$$= 8.2376$$

$$\Delta v_{52} = 0.1 * (0.0056) * (0.4922)$$

= 0.0003

$$\Delta v_{13} = 0.1 * (1.2311) * (0.6176)$$

= 0.0760

$$\Delta v_{23} = 0.1 * (1.2311) * (0.4922)$$

= 0.0606

$$\Delta v_{33} = 0.1 * (1.2311) * (0.1471)$$

= 6.0171

$$\Delta v_{43} = 0.1 * (1.2311) * (0.1314)$$

= 4.5601

$$\Delta v_{53} = 0.1 * (1.2311) * (0.7588)$$

= 0.0934

$$\Delta v_{14} = 0.1 * (0.0031) * (0.8059)$$

= 0.0002

$$\Delta v_{24} = 0.1 * (0.0031) * (0.6176)$$

= 0.0002

$$\Delta v_{34} = 0.1 * (0.0031) * (0.1941)$$

= 6.0171

$$\Delta v_{44} = 0.1 * (0.0031) * (0.1471)$$

$$=4.5601$$

$$\Delta v_{54} = 0.1 * (0.0031) * (0.9000)$$

= 0.0003

$$\Delta v_{15} = 0.1 * (-0.0020) * (0.5706)$$

= -0.0001

$$\Delta v_{25} = 0.1 * (-0.0020) * (0.3353)$$

= -7.0660

$$\Delta v_{35} = 0.1 * (-0.0020) * (0.1627)$$

= -3.2540

$$\Delta v_{45} = 0.1 * (-0.0020) * (0.1314)$$

= -2.6280

$$\Delta v_{55} = 0.1 * (-0.0020) * (0.8059)$$

= -0.0002

Sehingga didapatkan suku perubahan bobot ke unit tersembunyi yang dapat dilihat pada tabel berikut :

Tabel 4.10 suku perubahan bobot unit tersembunyi

Bobot	Z_1	Z_2	Z_3	Z_4	Z_5
v_1	0.0002	0.0002	0.0760	0.0002	-0.0001
v_2	8.9352	0.0002	0.0606	0.0002	-7.0660
v_3	6.8000	8.2376	0.0181	6.0171	-3.2540
v_4	6.8000	8.2376	0.0162	4.5601	-2.6280
v_5	0.0002	0.0003	0.0934	0.0003	-0.0002

Hitung koreksi nilai bias pada neuron yang nantinya akan digunakan memperbarui nilai dengan persamaan :

$$\Delta v_{\{0,1]} = 0.1 * 0.0068 = 0.0007$$

$$\Delta v_{\{0,2\}} = 0.1 * 0.0056 = 0.0006$$

$$\Delta v_{\{0,3\}} = 0.1 * 1.2311 = 0.1231$$

$$\Delta v_{\{0,4\}} = 0.1 * 0.0031 = 0.0003$$

$$\Delta v_{\{0,5]} = 0.1 * (-0.0020) = -0.0002$$

Hitung nilai bias baru pada neuron dengan persamaan:

$$\Delta v_{\{0,1]} = (-0.6194) + 0.0068 = -0.6126$$

$$\Delta v_{\{0,2\}} = (-0.1415) + 0.0056 = -0.1359$$

$$\Delta v_{\{0,3\}} = 0.4340 + 1.2311 = 1.6651$$

$$\Delta v_{\{0,4\}} = (-0.3951) + 0.0031 = -0.3920$$

$$\Delta v_{\{0,5\}} = 0.0449 + (-0.0020) = 0.0429$$

Hitunglah perubahan bobot garis menuju ke unit tersembunyi dengan persamaan :

$$v_{11}$$
 (baru) = $2.5025 + 0.0002 = 2.5027$

$$v_{21}$$
 (baru) = $(-1.6746) + 8.9352 = 7.2606$

$$v_{31}$$
 (baru) = $0.4717 + 6.8000 = 7.2717$

$$v_{41}$$
 (baru) = $(-0.0407) + 6.8000 = 6.7593$

$$v_{51}$$
 (baru) = 2.0471 + 0.0002 = 2.0473

$$v_{12}$$
 (baru) = $1.4642 + 0.0002 = 1.4644$

$$v_{22}$$
 (baru) = $(-0.2433) + 0.0002 = -0.2431$

$$v_{32}$$
 (baru) = $(-2.2607) + 8.2376 = 5.9769$

$$v_{42}$$
 (baru) = 1.9801 + 8.2376 = 10.2177

$$v_{52}$$
 (baru) = $(-0.2868) + 0.0003 = -0.2865$

$$v_{13}$$
 (baru) = $0.6225 + 0.0760 = 0.6985$

$$v_{23}$$
 (baru) = 1.8817 + 0.0606 = 1.9423

$$v_{33}$$
 (baru) = 1.9518 + 0.0181 = 1.9699

$$v_{43}$$
 (baru) = 1.4734 + 0.0162 = 1.4896

$$v_{53}$$
 (baru) = $(-1.6923) + 0..0934 = -1.5989$

$$v_{14}$$
 (baru) = $(-0.5057) + 0.0002 = 0.5059$

$$v_{24}$$
 (baru) = 2.7920 + 0.0002 = 2.7922

$$v_{34}$$
 (baru) = 1.9273 + 6.0171 = 7..9444

$$v_{44}$$
 (baru) = $(-0.5166) + 4.5601 = 4.0435$

$$v_{54}$$
 (baru) = $2.0560 + 0.0003 = 2.0563$

$$v_{15}$$
 (baru) = $(-2.4269) + (-0.0001) = -2.4270$

$$v_{25}$$
 (baru) = $(-0.9080) + (-7.0660) = -7.9740$

$$v_{35}$$
 (baru) = 1.4331 + (-3.2540) = -1.8209

$$v_{45}$$
 (baru) = (-2.9258) + (-2.6280) = -5.5538

$$v_{55}$$
 (baru) = (-1.8901) + (-0.0002) = -1.8903

Setelah selesai, akan didapatkan table nilai bobot baru pada input layer ke hidden layer seperti table berikut :

Tabel 4.11 bobot baru dari input layer ke hidden layer

Bobot	Z_1	Z_2	Z_3	Z_4	Z_5
v_1	2.5027	1.4644	0.6985	0.5059	-2.4270
v_2	7.2606	-0.2431	1.9423	2.7922	-7.9740
v_3	7.2717	5.9769	1.9699	7.9444	-1.8209
v_4	6.7593	10.2177	1.4896	4.0435	-5.5538
v_5	2.0473	-0.2865	-1.5989	2.0563	-1.8903

Langkah 6 : Tes nilai tertentu untuk berhenti belum terpenuhi karena nilai error dari output belum kecil dari dari 0.01.

Dinormalisasikan dengan rumus:

$$X_i = y(x \max - x \min) + x \min$$

$$X_i = (0.9799) * (14 - 1) + 1$$

= 14

$$X_i$$
 = (0.9799) * (26 – 4) + 4
= 25

$$X_i = (0.9799) * (43 - 3) + 3$$

= 42

$$X_i = (0.9799) * (52 - 4) + 4$$

= 51

$$X_i = (0.9799) * (46 - 3) + 3$$

= 45

Dari hasil normalisasi yang telah dilakukan, diketahui hasil prediksi jumlah mahasiswa prodi matematika UIN Sumatera Utara Medan pada satu tahun kedepan atau tahun 2020 adalah 177 mahasiswa.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari hasil penelitian dan pembahasan tentang metode Jaringan Syaraf Tiruan dalam memprediksi jumlah mahasiswa Prodi Matematika Fakultas Sains dan Teknologi dapat ditarik kesimpulan bahwa hasil proses jaringan syaraf tiruan menggunakan metode jaringan syaraf tiruan metode backpropagation dengan 450 data, dimana data akan dibagi menjadi dua bagian yaitu data uji dan data latih. Jaringan Syaraf Tiruan dengan metode backpropagation mampu menentukan atau memprediksi jumlah mahasiswa pada tahun 2020. Hasil dari prediksi jumlah mahasiswa Prodi Matematika Fakultas Sains dan Teknologi UIN Sumatera Utara Medan adalah 177 mahasiswa yang terdiri dari 14 mahasiswa dari Kota/kabupaten Medan, 25 mahasiswa dari Kota/kabupaten Deli Serdang, 42 Mahasiswa dari Kota/kabupaten Serdang Bedagai, 51 mahasiswa dari Kota/kabupaten Asahan, dan 45 mahasiswa dari Kota/kabupaten kota lainnya.

5.2 Saran

Diharapkan dalam prediksi jumlah mahasiswa baru, bukan hanya dilakukan untuk Universitas Islam Negeri Sumatera Utara Medan akantetapi juga dapat diterapkan di kampus-kampus lainnya.

DAFTAR PUSTAKA

- Andrijasa, M. F., Mustianingsih. 2010. Penerapan jaringan syaraf tiruan untuk memprediksi jumlah pengangguran di provinsi kalimantan timur dengan menggunakan algoritma pembelajaran backpropagation. *Jurnal informatika mulawan*. **Vol 5**. Hal:112-115.
- Apriliyah, Mahmudy, W. F., Widodo, A.W. 2008. PerkiraanPenjualan Beban Listrik Menggunakan Jaringan Syaraf Tiruan Ressilent Backpropagation (Rprop). *Kursor*. Vol.4. Hal:34-37.
- Fausett, L. 1994. Fundamental of Neural Networks: Architectures, Algorithms, And Aplication. 1stedition. New Jersey: Prentice Hall.
- Kiptiyah. 2007. Embriologi dalam Al-Qur'an "Kajian Proses Pencintaan Manusia". Malang: UIN Malang Press.
- Mason D. R., Douglas A Lind.1999. *Teknik Statistika Untuk Bisnis & Ekonomi*. Terjemahan Widyono Soetjipto, dkk. Jakarta: Erlangga.
- Pakaja, F. N., Agus. P. 2012. Peramalan penjualan mobil menggunakan jaringan syaraf tiruan dan certainty factor.
- Puspitaningrum, D. 2006. *Pengantar Jaringan Syaraf Tiruan*. Yogyakarta: Andi Offset.
- Prasetyo, E. 2014. *Data Mining: Mengolah Data Menjadi Informasi Menggunakan Matlab.* Yogyakarta: Andi Offset.
- Salamah, M., Suhartono, Wulandari, S. 2003. *Time Series Analysis*. Surabaya: FMIPA-ITS.

- Siang, J. J. 2009. *Jaringan Syaraf Tiruan & Pemrogramannya Menggunakan MATLAB*. Yogyakarta: Andi Offset.
- Setiawan, W. 2008. Prediksi Harga Saham Menggunakan Jaringan Syaraf Tiruan Multilayer Feedward Network Dengan Algoritma Backpropagation. KonferensiNasionalSistemDanInformatika. Vol 5. Hal:15-19.

LAMPIRAN

Data Mahasiswa Prodi Matematika

1. Mahasiswa Tahun 2015/2016

NO	Nama	Kota Asal
1	NOFRIDAYANTI NASUTION	KAB. LABUHAN BATU
2	SITI AISYIAH ASMI	KOTA MEDAN
3 4	KURNIA DESI IRYANA RAUDATUL ZANNA	KOTA MEDAN KAB. SIMALUNGUN
5	ISMADI SYAHPUTRA	KAB, LABUHAN BATU
6	HASYIM HAWARI LUBIS	KOTA MEDAN
7	SATRIA ABIMAYU	KOTA MEDAN
8	HAMDAN ABDI	KAB. SIMALUNGUN
9	RIZKI WARDANI	KAB. SERDANG BEDAGAI
10	KHAIRUN NISA	KAB. LANGKAT
11	HUSNATUL HIDAYAH HSB	KOTA MEDAN
12	LIA LESTARI	KAB. DELI SERDANG
13	NURUL FADHILLAH	KOTA MEDAN
14	FATIMAH AZZAROH	KOTA MEDAN
15	WIDYA TANTRI ASTUTI	KOTA MEDAN
16	JUNITA FADILLAH	KOTA MEDAN
17	DIAH REKA PUTRI	KOTA BINJAI
18	NISA KHAIRANI	KOTA MEDAN
19	SITI ZUNAIDA NASUTION	KOTA PEMATANGSIANTAR
20	ANIDAH	KAB. MANDAILING NATAL
21	FAJAR RAMADHAN B M	KOTA MEDAN
22	NUR MAWADDAH	KAB. MANDAILING NATAL
23	YAUMI YUMNA	KOTA MEDAN
24	INTAN PURNAMA SARI	KAB. MANDAILING NATAL
25	FAJARI HUSNUL WALID LUBIS	KAB. DELI SERDANG
26	FAUZAH UMAMI	KOTA MEDAN
27	DEVITA MAHARANI NASUTION	KAB. DELI SERDANG
28	SITI HANDAYANI	KOTA MEDAN
29	LINDA KUMALA SARI	KAB. ASAHAN

2. Mahasiswa Tahun 2016/2017

NO	Nama	Kota Asal
		KAB. SERDANG BEDAGAI
1	TIWI RAHAYU	KAB. SERDANG BEDAGAI
2	IMANE JELITA ANDRIAN	KAB. DELI SERDANG
3	BONA DEA SUNANDA	KAB. ASAHAN
4	SINDY ARIKA PUTRI NASUTION	KAB. DELI SERDANG
5	SITI FATIMAH	
6	SAID RYANDA WAHYUDI	KAB. DELI SERDANG
7	FITRI CHAIRUNISYA	KOTA MEDAN
8	PAUZIAH NASUTION	KOTA PADANGSIDIMPUAN
9	WENNY MARTA DOLOK SARIBU	KAB. DELI SERDANG
10	FINA NUR PERTIWI	KAB. SIAK
11	ILHAM SYAPUTRA	KAB. DELI SERDANG
12	UMI SARAH NURAINUN	KOTA MEDAN
13	ANGGI RAMADANY SIREGAR	KOTA MEDAN
14	DESI ERNI DEWI	KAB. SOLOK SELATAN
15	DAMAYANTI	KAB. LABUHAN BATU
16	IKA SILVIA RAMADANI	KAB. DELI SERDANG
17	DESI ARIMBI	KAB. DELI SERDANG
18	NOVITA SARI	KAB. ROKAN HILIR
19	FILZAH SAZWINA	KOTA MEDAN
20	RENDY NUR	KAB. SERDANG BEDAGAI
21	DINDA SARI	KAB. LABUHAN BATU
22	RODIANI DONGORAN	KOTA MEDAN
23	DENITA CHAIRANI	KOTA MEDAN
24	WINDA RISFANI NST	KOTA PADANGSIDEMPUAN
25	HASNI INDAH SARI	
26	SITI RAMADHANI NASUTION	KAB. BATUBARA
27	RAHMI SUSILOWATI	KAB. BATUBARA
28	INDAH PURNAMA SARI SIREGAR	KAB. PADANG LAWAS UTARA
29	SRI HANDAYANI	KOTA MEDAN
30	REGINA KUSWOYO	KOTA MEDAN
31	YOFFA SUNITA	KAB. SERDANG BEDAGAI
32	NURHASANAH	KAB. DELI SERDANG
33	NUR ATIKAH	KAB. MANDAILING NATAL
34	SITI NURFADILA	KAB. LANGKAT

35	EMA PRATIWI	KAB. DELI SERDANG
36	RADITA FADILLAH	KAB. DELI SERDANG
37	FITRIYA CYNDY	KOTA MEDAN
38	DWI SALASA RIANA	KAB. DELI SERDANG
39	DWI SYAFITRI	KAB. DELI SERDANG
40	DINDA KARTIKA	KOTA MEDAN
41	BAYU TEZA SYAHPUTRA	KAB. SERDANG BEDAGAI
42	SEPTI PURBOWATI	KAB. LABUHANBATU UTARA
43	PERLI PUJIANA	KAB. ACEH TENGGARA
44	FREDDY GIAWA	KOTA MEDAN
45	DIAN MAYA SARI	KAB. LABUHANBATU SELATAN
46	GITA DWI FAUZA	KOTA MEDAN
47	JUMIANTI RITONGA	KAB. LABUHAN BATU
48	SUSI SUSANTI KOMARIAH HASIBUAN	KAB. PADANG LAWAS
49	FAKHRI ANANDA SYAHPUTRA	KAB. ASAHAN
50	NURMA INDAH SARI	KAB. LANGKAT
51	NURUL KHALISA	KOTA MEDAN
52	SUCI CAHAYA HATI NASUTION	KOTA TANJUNGBALAI
53	FANI DARMAWAN PUTRA	KAB. LABUHAN BATU
54	AYU NOVIA	KAB. DELI SERDANG
55	HANIFAH DARA PUSPITA	KAB. DELI SERDANG
56	AYU HARIATI	KAB. LABUHAN BATU
57	EVI INDAH SARI	KAB. SIMALUNGUN
58	WANDA NATASYA DEWI	KAB. DELI SERDANG
59	ELVIRA YOLANDA MANGUNSONG	KAB. ASAHAN
60	AYU NAJMITA BINTI IR ZULKARNAIN	KOTA MEDAN
61	TRI HANDAYANI	KAB. DELI SERDANG
62	RIA WIDIYA PRATIWI	KAB. DELI SERDANG
63	NUR AZIJAH	KAB. LABUHANBATU SELATAN
64	EVITRI MALINDA IONA	KAB. ASAHAN
65	LEDYA FRISCHA	KAB. ROKAN HILIR
66	MAULINA MAWADDAH	KAB. DELI SERDANG
67	ABDUL MAZID GAJAH	KOTA MEDAN

3. Mahasiswa Tahun 2017/2018

NO	Nama	Asal Kota
NO	IVallia	Asal Ruta
1	LADIA SABRINA	KAB. ASAHAN
2	CAHYA BINTANG RAMADHINA	KAB. SERDANG BEDAGAI
3	FITRIANI	KOTA MEDAN
4	MUTIA HATINA DEWI	KOTA MEDAN
5	NOVI ARDILA	KAB. DELI SERDANG
6	NABILLA FAZARIANI	KOTA MEDAN
7	ROHIMA AL MAHUWANAH	KOTA MEDAN
8	VALENTINA MANDASARI	KAB. LANGKAT
9	RIKA PRATIWI	KAB. DELI SERDANG
10	HARI MULIAWAN	KOTA TEBING TINGGI
11	IKA JUNIA SAPUTRI	KAB. DELI SERDANG
12	AYU WARDANI	KOTA MEDAN
13	PAISAL SIRAIT	KAB. SIMALUNGUN
14	FAISAL ANSHORI NASUTION	KAB. LABUHAN BATU
15	AULIA YUSHARSAH	KAB. SIMALUNGUN
16	OKTAVIANA	KAB. DELI SERDANG
17	RICKA AFRIANI	KOTA MEDAN
18	AGNES FEBRIANTI MATONDANG	KOTA MEDAN
19	NURUL KHOIRIAH HASIBUAN	KAB. PADANG LAWAS
20	NOVIA RININGSIH	KAB. DELI SERDANG
21	SRI RAHMADANI	KAB. LABUHANBATU SELATAN
22	NURUL FARHANI	KOTA MEDAN
23	MAISARAH	KAB. DELI SERDANG
24	M. BAGUS KURNIAWAN	KOTA MEDAN
25	FITHRIA AIDRA BR. MARPAUNG	KOTA MEDAN
26	NURUL QOLBILAH PRIHATINI	
27	YOLA ARMITA NASUTION	KOTA MEDAN
28	AJIE AL ARIEF	KAB. DELI SERDANG
29	MITHA WULANDARI	KAB. DELI SERDANG
30	TRI LUTFIAH WARDAH	KAB. SERDANG BEDAGAI
31	RISTIKA DIAN UTAMI	KAB. DELI SERDANG
32	YOLANDINI EKA PUTRI	KAB. DELI SERDANG
33	JIHAN YUMNA KHOTIMAH	
34	TIKA RAMADANI	KAB. BATUBARA
35	SITI NUR ASIAH	KAB. DELI SERDANG
36	M. RIO FARWANSYAH	
37	CHAIRANI	KOTA MEDAN
38	RIZKI GUNAWAN NST	KOTA MEDAN
39	MURNI AMALIA ADRI	KAB. LANGKAT
40	RAMADIANI BR RAMBE	KAB. LABUHAN BATU

41	HUSNUL FADHILLAH	KAB. SERDANG BEDAGAI
42	ARYA IMPUN DIAPARI LUBIS	KOTA MEDAN
43	ANJAS FERNANDO	KOTA MEDAN
44	ENDAH NURFEBRIYANTI	KAB. DELI SERDANG
45	DITHA AULIA GURUSINGA	KOTA MEDAN
46	NURUL APRILLA RIZKI	KAB. SIMALUNGUN
47	NUR INDAH SARI	KAB. KARO
48	MUTIAH NASUTION	KOTA MEDAN
49	ALFINA FEBRIANI NASUTION	KOTA MEDAN
50	RAHMADITA PRATIWI	KAB. DELI SERDANG
51	PUTRI YUNA	KAB. DELI SERDANG
52	INDRIYATI YULISTIYANI	KAB. DELI SERDANG
53	DEA RICHA	KOTA MEDAN
54	SYAHRONAL HIDAYAT NASUTION	KAB. PADANG LAWAS
55	ALFINDA KHARISMA ARDI	KOTA MEDAN
56	RATNA SRI DEWI	KAB. BATUBARA
57	ATIKA MAYANG SARI	KAB. DELI SERDANG
58	YURID AUDINA	KAB. ASAHAN
59	SHAZLYANI SM	KOTA MEDAN
60	AINIL HAFIZHA NASUTION	KOTA MEDAN
61	ANWAR EFENDI NASUTION	KOTA MEDAN
62	RIDHO ATMAJA	
63	INNESYA MAGHFIRAH MUNTHE	KAB. LABUHAN BATU
64	WILDA SYAHRANI MA	KAB. ROKAN HILIR
65	IRVAN GINTING	KOTA MEDAN
66	RULLY RUMAIDA	KAB. TAPANULI SELATAN
67	HAMIDAH WULAN DARI	KAB. SIMALUNGUN
68	INDAH WIDYA HANZANI	
69	AYU RIZKINA	
70	MAULIDYA KHAIRANI	KAB. DELI SERDANG
71	MAYANG MODELINA CYINTHIA	KOTA MEDAN
72	HEMA PEBRIA ROLLINGKA	KOTA PADANGSIDEMPUAN
73	HARI KURNIAWAN	KAB. PADANG LAWAS UTARA
74	ELLA NUHRUL HUDA	KAB. KUTAI TIMUR
75	AHMAD WAHYUDI	KOTA MEDAN
76	TRAMILTA SALSABILA HARAHAP	KOTA MEDAN
77	JIHAN ADELIA NASUTION	KAB. DELI SERDANG
78	ELSYAH SUHADIYAH	KOTA MEDAN
79	SARTIKA DEWI	KAB. DELI SERDANG
80	EVA YULIANI	KAB. DELI SERDANG
81	PUTRI LESTARI	KAB. DELI SERDANG
82	ELVI KHORIAH HARAHAP	KAB. DELI SERDANG
83	UCI RAMADHANI DALIMUNTHE	KAB. LABUHANBATU SELATAN
84	HAFRISYAH SUMARIYANTI	KAB. DELI SERDANG

85	SADRI ANGKAT	KOTA PEMATANGSIANTAR
86	NIMAS RINDY ANTIKA	KAB. ACEH SINGKIL
87	LILI ANJAR WATI	KAB. DELI SERDANG
88	SARI FATHUL JANNAH HARAHAP	KAB. LABUHANBATU SELATAN
89	DEVI PRATIWI	KAB. DELI SERDANG
90	SARIFAH ANJELI	KOTA TANJUNGBALAI
91	MUHAMMAD CHAIRUL IMAM	
92	FAJAR FHATURRAHMAN	KOTA MEDAN
93	HARDIAN ANSARI HASIBUAN	KAB. LABUHANBATU SELATAN
94	MELATI PUSPITA SARI LUBIS	KAB. SERDANG BEDAGAI
95	DESI RATNA SARI	KOTA MEDAN
96	SRI MULYANI	KAB. ASAHAN
97	MUHAMMAD ALFI SYAHRI HARAHAP	KOTA MEDAN
98	AGUNG LESMANA SIREGAR	KOTA MEDAN
99	DISYA AISYA	KAB. LABUHANBATU SELATAN
100	RUSLINA RAHMI	KOTA PEMATANGSIANTAR
101	TRIMA LESTARI	KAB. LABUHANBATU UTARA
102	NUR INDAH	KOTA MEDAN
103	NUR INDAH PUJI LESTARI	KOTA MEDAN
104	RIYANDA FANI	KOTA TANJUNGBALAI
105	NOVI ELIZA POETRI	
106	RIRIN INDAHWATI	
107	RIZKY MAISYAROH SIREGAR	KAB. TAPANULI TENGAH
108	AHMAD ALI NASUTION	KAB. MANDAILING NATAL
109	RIEZKY MEILIZA	
110	NUR ATSILAH HASIBUAN	KAB. DELI SERDANG

4. Mahasiswa Tahun 2018/2019

NO	Nama	Asal Kota
1	RIZKI HANNUM	KAB. MANDAILING NATAL
2	NILA SARI	KAB. LABUHANBATU SELATAN
3	MARWAN	KOTA MEDAN
4	DHEA AULIYA RAMADHANI JAHRI	KAB. SERDANG BEDAGAI
5	DWI PERTIWI	KOTA BINJAI
6	YUSITA IRLIANI	KAB. LABUHANBATU SELATAN
7	CITRA AJENG PRATIWI	KOTA MEDAN
8	PUJI SYAHPUTRI	KAB. DELI SERDANG
9	SRI WAHYUNI	KAB. DELI SERDANG
10	KHAIRUL PURQON	KOTA MEDAN
11	SILVIA ARIANTI	KOTA MEDAN
12	SHARANI	KOTA MEDAN
13	JALALUDDIN MAHALLY HASIBUAN	KAB. LABUHAN BATU
14	RAIDHATUL ILMI	KAB. DELI SERDANG
15	SILVI KHAIRIYAH MANURUNG	KOTA MEDAN
16	NUR FADILA	KAB. DELI SERDANG
17	ANNISA MUNAWAROH NASUTION	
18	SUMAWIYAH HSB	KAB. MANDAILING NATAL
19	RAUDHATUN MARDIYAH	KAB. SERDANG BEDAGAI
20	ZULAIKA	KOTA TANJUNGBALAI
21	NURUL QOMARIYAH	KOTA MEDAN
22	ESTO FANNY MUNTHE	KOTA MEDAN
23	GITA SAFITRI	KOTA MEDAN
24	ARMAYA PUTRI BR GINTING	KAB. DELI SERDANG
25	NURAFRIDA RAMBE	
26	WIDI IHDINA NABILLA	KOTA MEDAN
27	HANIFATUL HAYATI NISA	KOTA MEDAN
28	REZZA OLGA SHAPONDA PUTRI	KOTA MEDAN
29	QUEENTY DHEA HAURA BR SITEPU	KAB. LANGKAT
30	YAYANG SAFITRI	KOTA MEDAN
31	SUCI PERMATA SARI	KOTA DUMAI
32	IKA THRISNA WAHYU DIANTI	KAB. DELI SERDANG
33	ANNISA RAJAQ LUMBAN BATU	KOTA MEDAN
34	FRISKA PUTRI ARYATI	KAB. DELI SERDANG
35	DENI KAHENI	KOTA TANJUNGBALAI
36	RANI PUTRI ATMALIA	KAB. SERDANG BEDAGAI
37	MELLY NIA FAJRIANI SINAGA	KAB. BATUBARA
38	ZEPRI JOHANDA	KOTA MEDAN
39	MUKMINAH MARDIAH	KOTA MEDAN
40	DEWI SAFITRI	KAB. DELI SERDANG

		1442 104444
41	MEI YUNINA ARIANTI	KAB. ASAHAN
42	SALSABILLAH HAZIZAH	KAB. SERDANG BEDAGAI
43	RAFIDA	KOTA MEDAN
44	DITA SEPRINA	KOTA MEDAN
45	ADEK KUMALA SARI	KAB. DELI SERDANG
46	RIANI DWI LESTARI	KAB. ROKAN HILIR
47	ISNANI NURUL DEVA	KAB. SIMALUNGUN
48	PUTRI MIRANTI HARAHAP	KAB. DELI SERDANG
49	SITI NURANTIKA	KAB. DELI SERDANG
50	ANGGI PRANATA	KOTA MEDAN
51	MUHAMMAD IQBAL FAHRI	KAB. DELI SERDANG
52	HENDRI SAGALA	KAB. LABUHANBATU SELATAN
53	CINDY ARTIKA	KAB. SERDANG BEDAGAI
54	DWI TARTILA	KAB. DELI SERDANG
55	ALDI RIZKY	KOTA MEDAN
56	YUSRA HABIBAH LAILY	KOTA MEDAN
57	SYARIFAH UTARI PANJAITAN	KAB. ASAHAN
58	RIKA FITRIANI	KAB. LANGKAT
59	ZIANA SYAHPUTRI	KAB. LANGKAT
60	AYU ANNISA SURATNA	KAB. DELI SERDANG
61	BELLA SYAHRANI NASUTION	KOTA MEDAN
62	SITI AISYAH	KAB. DELI SERDANG
63	PUTRA ANGGA PRAMUDIA	KAB. DELI SERDANG
64	NURMALINDA UTAMI SIREGAR	KAB. DELI SERDANG
65	SEKAR AYU IRAWAN	KAB. DELI SERDANG
66	EGA ARIFTA	KAB. PASAMAN
67	PUTRI PRATIWI	KOTA MEDAN
68	KHAIRUN NIKMAH	KAB. LABUHAN BATU
69	MANISYAH RIZKINA LUBIS	KAB. PADANG LAWAS
70	YOGA FEBRIYANSA	KAB. DELI SERDANG
71	PUTRI NOPRIANI SIANIPAR	KOTA MEDAN
72	PANCA TAUFIK KURAHMAN	KAB. DELI SERDANG
73	APRILLIANI AMANDA SARI	KAB. DELI SERDANG
74	RATIH PRATIWI	KAB. LABUHAN BATU
75	INA RIZKI HARAHAP	KOTA MEDAN
76	RAHMI PAMELA PUTRI	KOTA MEDAN
77	UMAR ABDUL GANI TARIGAN	KOTA MEDAN
78	NALDI SYAHPUTRA	KOTA MEDAN
79	QURNIA AINI BAY	KAB. LABUHANBATU UTARA
80	SURAYYA AULIA	KAB. DELI SERDANG
81	NADA PITRIA	KOTA MEDAN
82	ANANG PRANATA	KAB. SIMALUNGUN
83	INDRA WILLY JULIANSYA NASUTION	KAB. LABUHANBATU SELATAN
84	SAM AIDAH RITONGA	KAB. LABUHANBATU SELATAN
	J	

85	PUTRI RAHMA NOVIA	KOTA MEDAN
86	DAFA AL QIFTI NASUTION	KAB. DELI SERDANG
87	NURMAJIDAH	KOTA MEDAN
88	YULANDA NOVITA ZEBUA	
89	SERLY AFRINA SINAGA	KAB. SIMALUNGUN
90	SRI WAHYUNI	KOTA MEDAN
91	NUR LELA	KAB. DELI SERDANG
92	NURLELI	KAB. DELI SERDANG
93	HUSAINUL RISKI DAULAY	KAB. MANDAILING NATAL
94	DESI KHAIRANI	KAB. ASAHAN
95	NUR FITRIANI	KAB. ASAHAN
96	TARISSA ALRIZA	KOTA TEBING TINGGI
97	MUHAMMAD REJA SINAGA	KAB. SIMALUNGUN
98	ELI SAFITRI	KAB. SERDANG BEDAGAI
99	DARA NURUL HASNAH	КОТА ВАТАМ
100	ELY SAHPITRI	
101	ERSYA NURUL FAIRUZ	KOTA MEDAN
102	WENY FITRIA	KOTA MEDAN
103	RAHMA MIYATI	KAB. DELI SERDANG
104	TRIKARTIKA CHANIAGO	KOTA MEDAN
105	ARTIKA RAHMADANI	KOTA MEDAN
106	SULAIMAN ANANDA HARAHAP	KOTA TANJUNGBALAI
107	SYILVIA CAHYANI RAMBE	KOTA MEDAN
108	ZIHAN ROSSUS AINI HARAHAP	KOTA PADANGSIDEMPUAN
109	WINDA YUNIAR AMBARITA	KAB. SIMALUNGUN
110	TESYA YUNITA SEMBIRING	KAB. DELI SERDANG
111	HERU WARDANA	
112	DINA ANDRIANI	KOTA MEDAN
113	ADELLA AULIA MUKTI	KOTA MEDAN
114	FAKHRAINI ZAHRA AFIFA	KOTA DUMAI
115	ZARA SALSABILLA	KAB. BATUBARA
116	ASRUN DABUTAR	KAB. DAIRI
117	FALAHUDDINI KUSUMA	KOTA MEDAN
118	FITRI AGUSLI	KOTA MEDAN
119	LINA SAFRINA	KAB. DELI SERDANG
120	NURHAJIZAH	KAB. TAPANULI UTARA
121	RINI ADE WILLANA	KAB. ACEH TENGAH
122	CICI ARISKA	KOTA MEDAN
123	PUTRI RIZKY FEBRIANTI	KOTA PEMATANGSIANTAR
124	FITRIANI	KOTA MEDAN
125	IRENA BLASTER	KOTA PEMATANGSIANTAR
126	AYU LESTARI	KAB. DELI SERDANG
127	MUHAMMAD WIRA YUDA	
128	DIAN ARIANTO	KAB. DELI SERDANG
	-	

129	REKA RAHMAWI	KAB. ROKAN HILIR
130	NANDA MAYLANY AKBAR	KAB. DELI SERDANG
131	LISA VARANIKA BABAY	KOTA MEDAN
132	RESVA AMEA	KAB. LANGKAT
133	GISHELA AGRA MOUKIA	KAB. DELI SERDANG
134	LISA SETIA NINGSIH	KAB. BENGKALIS
135	MUHAMMAD HARITS AZHARI	KAB. LANGKAT
136	FIKRI NUR ARDIANSYAH	KAB. DELI SERDANG
137	RIZKA SHAFITRI	KOTA MEDAN
138	DWI ANGGRAINI	KAB. LANGKAT
139	MUHAMMAD AMIZAENI APRIZA	KOTA MEDAN
140	WINDA UTAMI ILHAM	KOTA TEBING TINGGI
141	WINDI ANTIKA	KAB. SERDANG BEDAGAI
142	ANITA NINGSIH SIRAIT	KAB. LABUHANBATU SELATAN
143	RAHMELIA PUTRI HRP	KAB. DELI SERDANG

5. Mahasiswa Tahun 2019/2020

NO.	NAMA LENGKAP	ASAL KOTA
1	POPPY ANDRIANI	KAB. DELI SERDANG
2	ADETYA WARMAN	KAB. DELI SERDANG
3	SHOPIA	KAB. SIMALUNGUN
4	HAYIRUL BARIAH	KAB. DELI SERDANG
5	FAHIRA AUDRI YUNISA	KAB. SERDANG BEDAGAI
6	SHELLY KILAN CAHAYA PULUNGAN	KAB. SERDANG BEDAGAI
7	ALYA AZHRAH HUTAGALUNG	KAB. SIMALUNGUN
8	ARIF ALAMSYAH	KAB. DELI SERDANG
9	UNI AGUSTIN	KAB. SERDANG BEDAGAI
10	MUHAMMAD RIDWAN	KAB. SERDANG BEDAGAI
11	EKA YUSNITA	KOTA MEDAN
12	NURJANNAH	KAB. DELI SERDANG
13	THANIA HERMAYANTI	KOTA TEBING TINGGI
14	CAHYA DWI RAMADHANI	KAB. SERDANG BEDAGAI
15	RAHMAT DARMAWAN	KAB. SIMALUNGUN
16	RENI PUSPITA	KAB. LABUHAN BATU
17	TASLIMA DEWI	KAB. LABUHAN BATU
18	NOERDIANSYAH	KAB. ASAHAN
19	PUTRI AYUNDARI	
20	RADITA RAHMA	KOTA MEDAN
21	YANNA REZKI FADILLAH	KAB. BATUBARA
22	SARIF ZMUDA PASARIBU	KAB. PADANG LAWAS
23	ATIKA RAHAYU	KOTA MEDAN
24	SAUQI OURI DWI PUTRI	KOTA MEDAN
25	FANNY ABDHILLAH	KAB. DELI SERDANG
26	INTAN IRFANILIA	KAB. DELI SERDANG
27	SINTIA FRANSISKA	KAB. LANGKAT
28	DEBI ANGGITASYAH	KOTA MEDAN
29	MUHAMMAD IQBAL	KAB. DELI SERDANG
30	AGUN SETIAWAN	KAB. LABUHANBATU UTARA
31	GUSTI ARYA WICAKSANA	KAB. DELI SERDANG
32	MEYSIN ANDIRA	KAB. SIMALUNGUN
33	AYU ISNAINI FATMAWATI	KAB. LABUHAN BATU
34	NURISSA AULIA	KAB. LANGKAT

35	SRI RIZKY BR HARAHAP	KOTA MEDAN
36	NANDA	KAB. KARO
37	ZAYYAN RAMADHANTI	KOTA MEDAN
38	IBNU HABIB NAINGGOLAN	
39	ROSHIHAN MAWAZZI LUBIS	KAB. LANGKAT
40	ZAKARIA ALFIKRI SIRAIT	KOTA MEDAN
41	RATU YOULANDA PULUNGAN	KOTA MEDAN
42	WINDY KURNIA DEWI	KAB. DELI SERDANG
43	AISYAH	KOTA MEDAN
44	BILLY VANESA SINUHAJI	
45	FITRI ARMANDA	KOTA MEDAN
46	LUTHFI FARHAN	KOTA MEDAN
47	MUHAMMAD VIKRY REZKI RAMBE	KOTA MEDAN
48	NURJANNAH NASUTION	KOTA MEDAN
49	KHAILA AFSARI	KOTA MEDAN
50	SUCI MAHARANI NASUTION	KAB. LABUHANBATU UTARA
51	SOPHIA SALSALINA	KAB. DELI SERDANG
52	SITI RAHMI RAMBE	KOTA MEDAN
53	ELVIANA SARI	KOTA PEMATANGSIANTAR
54	NUGIE WISIARDI	KAB. DELI SERDANG
55	WULANDARI	KOTA MEDAN
56	DIMAS BAGUS ARJUNA	KOTA MEDAN
57	MIFTAH PRATIWI	KAB. DELI SERDANG
58	JENI YULINDA	KAB. SIMALUNGUN
59	CHAIRINA	KAB. SIMALUNGUN
60	NURMADANI	KAB. PADANG LAWAS UTARA
61	SOFIA NABILLA	KOTA MEDAN
62	MUHAMMAD AFRIZAL TANJUNG	
63	FEBY MAYORI RAMBE	KOTA MEDAN
64	SYAHIRA RAHMADHANI SIREGAR	KOTA MEDAN
65	INDRIYANI	
66	MEI SARAH SIREGAR	KOTA MEDAN
67	NUR MANDA SARI	KOTA MEDAN
68	SILVA AZURA	KOTA MEDAN
69	ATIKA NADILA	KAB. ASAHAN
70	MUHAMMAD FARHAN MINGKA	
71	HARRY FEROZA	KAB. DELI SERDANG

72	YUSNIDA HANIM NST	KOTA MEDAN
73	HASNA ULPA UJIAH SIMAMORA	KOTA MEDAN
74	FATIYA CAHYA	KAB. DELI SERDANG
75	QONITA PUTRI ANDINI	KOTA MEDAN
76	MAEYRA SAPANI DAULAY	
77	MICHAEL HANDRIANTO	KAB. TAPANULI TENGAH
78	IQWA FUTRI ANGGRAINI	
79	UCI RAHMADANI	KAB. DELI SERDANG
80	INDAH HATIKA LUBIS	
81	LULUK ADDINI	KOTA MEDAN
82	DEVA REZKY RAMADHANI	KAB. ASAHAN
83	EVI BORLIANA SIREGAR	
84	KHALIZA ULFIA	
85	ELPITA SARI HASIBUAN	
86	FIKRI HUSIN BATUBARA	KAB. PADANG LAWAS
87	DIAN FADILA. S	KOTA MEDAN
88	MHD PANERANGAN HASIBUAN	KAB. PADANG LAWAS
89	ELIS CITRA PURNAMA PURBA	KAB. SIMALUNGUN
90	REZKI AZMI	KAB. ROKAN HILIR
91	NURJANNA	KAB. TAPANULI SELATAN
92	NUR HAFIZAH	
93	ROPIQOH	KAB. MANDAILING NATAL
94	MUHAMMAD AFIF FAUZI HASIBUAN	KOTA MEDAN
95	NUR ALVI ANNISA	
96	EVA RIDYA WANTI LINGGA	
97	ARDANIAH HAZRAH	KAB. LANGKAT
98	HANIFA MARDIATUN NASUTION	
99	HENNY MAY SARAH	KOTA PEMATANGSIANTAR
100	NIA ISNAINI	

Data Input

Kota/	Tahun				
Kabupaten	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	<i>x</i> ⁵
Medan	14	15	34	46	31
D. Serdang	3	18	26	34	16
S. Bedagai	1	4	4	7	5
Asahan	1	4	3	4	3
Kota Lain	10	26	43	52	46
Total	29	67	110	143	101

Data Input Setelah Transformasi

Kota/		Tahun			
Kabupaten	X_1	X_2	X_3	X_4	X_5
Medan	0.3039	0.3196	0.6176	0.8059	0.5706
D. Serdang	0.1314	0.3666	0.4922	0.6176	0.3353
S. Bedagai	0.1000	0.1471	0.1471	0.1941	0.1627
Asahan	0.1000	0.1471	0.1314	0.1471	0.1314
Kota Lain	0.2412	0.4922	0.7588	0.9000	0.8059

Data Pelatihan

Pola	X_1	X_2	X_3	X_4	X_5
1	0.3039	0.3196	0.6176	0.8059	0.5706
2	0.1314	0.3666	0.4922	0.6176	0.3353
3	0.1000	0.1471	0.1471	0.1941	0.1627
4	0.1000	0.1471	0.1314	0.1471	0.1314
5	0.2412	0.4922	0.7588	0.9000	0.8059

Data Target

Pola	X_1	X_2	X_3	X_4	X_5
6	2.6176	1.9431	0.7510	0.6570	3.1981

Data Pengujian

Pola	X_1	X_2	X_3	X_4	X_5
2	0.1314	0.3666	0.4922	0.6176	0.3353
3	0.1000	0.1471	0.1471	0.1941	0.1627
4	0.1000	0.1471	0.1314	0.1471	0.1314
5	0.2412	0.4922	0.7588	0.9000	0.8059
6	2.6176	1.9431	0.7510	0.6570	3.1981

Nilai Bobot (V) Dari Input Ke Lapisan Tersembunyi ($Hidden\ Layer$)

Bobot	Z_1	Z_2	Z_3	Z_4	Z_5
v_1	2.5025	1.4642	0.6225	-0.5057	-2.4269
v_2	-1.6746	-0.2433	1.8817	2.7920	-0.9080
v_3	0.4717	-2.2607	1.9518	1.9273	1.4331
v_4	-0.0407	1.9801	1.4734	-0.5166	-2.9258
v_5	2.0471	-0.2868	-1.6923	2.0560	-1.8901

Nilai Bobot Dari Lapisan Tersembunyi Ke Output

Bobot	Y
w_1	-3.8498
w_2	1.8899
w_3	-0.0084

w_4	-1.9547
w_5	3.8528

Nilai Bias (v_{i0}) Dari Input Ke Lapisan Tersembunyi (Hidden Layer)

Bias	1	2	3	4	5
v_j	-0.6194	-0.1415	0.4340	-0.3951	0.0449

Nilai Bias (w_{i0}) Dari Lapisan Tersembunyi Ke *Output*

Bias	1
w_j	-0.2878

Cara Mencari Nilai Bobot Dengan Aplikasi Matlab

To get started, select "MATLAB Help" from the Help menu.

>> p=[0.3039 0.3196 0.6176 0.8059 0.5706;0.1314 0.3666 0.4922 0.6176 0.3353;0.1000 0.1471 0.1471 0.1941 0.1627;0.1000 0.1471 0.1314 0.1471 0.1314;0.2412 0.4922 0.7588 0.9000 0.8059]

>> t=[2.6176 1.9431 0.7510 0.6570 3.1981]

```
t = 2.6176 1.9431 0.7510 0.6570 3.1981
```

- >> %data input dan target
- >> % prepocessing
- >> [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t)

pn =

```
-1.0000 -0.9375 0.2498 1.0000 0.0625

-1.0000 -0.0325 0.4842 1.0000 -0.1613

-1.0000 0.0011 0.0011 1.0000 0.3326

-1.0000 1.0000 0.3333 1.0000 0.3333

-1.0000 -0.2380 0.5713 1.0000 0.7143
```

minp =

0.3039

0.1314

0.1000

0.1000

0.2412

maxp =

0.8059

0.6176

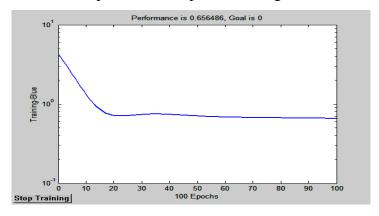
0.1941

0.1471

0.9000

tn =

```
mint =
```


0.6570

maxt =

3.1981

- >> %membangun jaringan syaraf feedforward
- >> net = newff (minmax(pn),[5 1],{'logsig','purelin'},'traingdm');
- >> % set bobot
- >> % set mx epoch, goal, learning rate, hidden layer, A, show step
- >> %melakukan pembelajaran
- >> net = train (net,pn,tn);

TRAINGDM, Epoch 0/100, MSE 4.26894/0, Gradient 6.74695/1e-010
TRAINGDM, Epoch 25/100, MSE 0.713625/0, Gradient 0.431058/1e-010
TRAINGDM, Epoch 50/100, MSE 0.705105/0, Gradient 0.546276/1e-010
TRAINGDM, Epoch 75/100, MSE 0.670935/0, Gradient 0.245556/1e-010
TRAINGDM, Epoch 100/100, MSE 0.656486/0, Gradient 0.235468/1e-010
TRAINGDM, Maximum epoch reached, performance goal was not met.

>> % set bobot awal

 $>> net.IW\{1,1\}$

ans =

-1.6746 -0.2433 1.8817 2.7920 -0.9080

```
0.4717 -2.2607 1.9518 1.9273 1.4331
 2.0471 -0.2868 -1.6923 2.0560 -1.8901
>> net.b{1,1}
ans =
 -3.8498
 1.8899
 -0.0084
 -1.9547
  3.8528
>> net.LW\{2,1\}
ans =
 -0.6194 -0.1415 0.4340 -0.3951 0.0449
>> net.b{2,1}
ans =
 -0.2878
```